
A preliminary version of this paper appears in the proceedings of ACNS 2021. This is the full version.

Improved Structured Encryption for SQL Databases
via Hybrid Indexing

David Cash1, Ruth Ng2, and Adam Rivkin1

1 University of Chicago
2 University of California San Diego

{davidcash,amrivkin}@uchicago.edu, ring@eng.ucsd.edu

Abstract. We introduce a new technique for indexing joins in encrypted SQL databases called partially
precomputed joins which achieves lower leakage and bandwidth than those used in prior constructions.
These techniques are incorporated into state-of-the-art structured encryption schemes for SQL data,
yielding a hybrid indexing scheme with both partially and fully precomputed join indexes. We then
introduce the idea of leakage-aware query planning by giving a heuristic that helps the client decide,
at query time, which index to use so as to minimize leakage and stay below a given bandwidth budget.
We conclude by simulating our constructions on real datasets, showing that our heuristic is accurate
and that partially-precomputed joins perform well in practice.

1 Introduction

SQL applications are often deterred from using cloud storage solutions because they do not wish to grant a
third party access to their sensitive data. Yet, in-house solutions often are less convenient than these large-
scale ones and are vulnerable to compromise as well. This calls for a cryptographic solution which allows
data on the cloud to be end-to-end encrypted so that the server never “sees” the sensitive data. This in turn
poses a challenge when the server is called upon to perform SQL operations on the data.

Most current offerings of this technology depend heavily on property-revealing encryption (PRE), making
them vulnerable to leakage abuse attacks (LAAs). For example, Always Encrypted either deterministically
encrypts columns or stores them with an ordered index [4]. These techniques have been shown to offer
little-to-no privacy in certain practical scenarios [37,26].

A more promising approach is structured encryption (StE) which uses auxiliary encrypted data structures
(e.g. encrypted multimaps) to support a subset of SQL queries [15]. This is done by translating the SQL
query into tokens which can be passed to the server to query the auxiliary structures. The outputs of this are
compiled, decrypted and processed to retrieve the SQL query result. Security is measured by leakage profiles,
which characterize what information a curious server can learn. In particular, StE-based constructions leak
equal or less than PRE-based constructions and resist most known LAAs [20,37,8,9,25,26,27].

Our contributions. Our work can be grouped into three main contributions:

1. Partially precomputed joins: We introduce a new way to index (equi)joins which stems from the simple
observation that when the server fully precomputes (FP) joins, the client has to download and decrypt
a quadratic number of rows and the server learns the equality pattern of said rows. In our approach,
the server partially precomputes (PP) joins: instead of indexing exactly which rows from the input table
should be concatenated and returned, it just stores the set of rows from each input table that appears
anywhere in the join output. At query time, the client downloads these sets and computes the join. When
this is used to support SQL queries of the form “select * from id1 join id2 on at1 = at2”, PP outperforms
FP in both leakage and bandwidth at the cost of a logarithmic factor of client computation (in the worst
case).

2. Hybrid indexing: When we incorporate PP joins into state-of-the-art StE schemes, we discover that
some queries (e.g. those with a selection subquery) cannot be computed in the same way because the
server does not know the equality pattern on the join columns (i.e. how the rows “match up”). So while
PP joins are still the more secure choice, they sometimes incur more bandwidth than FP. To address this,
we develop a hybrid StE scheme with both forms of indexing. The client chooses which to use at query
time. We provide the first heuristic (that we are aware of) to enable this type of leakage-aware client-side

1

query planning, helping the client decide how to minimize leakage without exceeding a given bandwidth
budget.

3. Simulations on real data: We quantify the effect of using FP and PP join indexing on bandwidth
incurred by simulating our constructions on data from the City of Chicago’s Data Portal and MySQL’s
sample Sakila database [2,3]. On simple (non-recursive) join queries, PP’s bandwidth is on average 231
times less than FP’s but more complex (recursive) queries are split down the middle as to which option
used less bandwidth. We also demonstrate the accuracy of our heuristic under different client storage
constraints. Assuming client storage comparable to that which is used in SQL Server, our heuristic chose
a query plan with the maximal number of PP joins 79% of the time, and the optimal query plan 68% of
the time.

Related work. Encrypted databases have been treated from a variety of perspectives. Structured encryp-
tion (StE) was defined by Chase and Kamara (CK) and is a special case of SSE, which was first defined by
SWP [42].

We see our work as a direct extension and improvement upon SPX and OPX, two schemes which applied
StE to the problem of indexing SQL databases [15,32,34]. Both our scheme and OPX address a similar
query class to the one introduced in SPX, but lower leakage by using the hashset technique from OXT and
primitives inspired by CJJJKRS [12,13]. In particular, our FpSj scheme in Section 4.2 bears many similarities
to OPX with minor leakage improvements from using a single indexing data structure. Our PpSj and HybStI
schemes (in Section 4.2 and Section 5 respectively) introduce a new technique which further lowers leakage
and server storage. For non-recursive queries, there are also substantial bandwidth savings.

PRE-based solutions achieves higher query support at the cost of higher leakage [39,24,1,21,44], and are
particularly susceptible to leakage abuse attacks [20,37,8,9,25,26,27].

Finally, encrypted search has also been attempted using alternate models and architectures including the
database-provider model [28], MPC [16,6], ORAM [23] and trusted execution environments [35,11,5].

Other works have also partially delegated computation to the client, to reduce leakage or increase query
support, though none have applied it to joins [43,17,19].

2 Preliminaries

We denote the empty string with ε. Given positive integer n, let [n] = {1, 2, ... , n}. Given tuples t1 =
(x1, ... , xn) and t2 = (y1, ... , ym) we write t1‖t2 as a shorthand for (x1, ... , xn, y1, ... , ym). We extend set
operations ∩,∪ ∈,⊆ from sets to tuples by interpreting the tuples as sets.

Our algorithms often make use of dictionaries D which map labels ` ∈ {0, 1}∗ to values D[`] ∈ {0, 1}∗ ∪
{⊥}. We also adopt the shorthand D.Lbls = {` ∈ {0, 1}∗ : D[`] 6= ⊥}. A multimap M is an dictionary where
M[`] is either a set of strings or ⊥.

Pseudocode. In pseudocode, we will assume that all integers , strings and sets are initialized to 0 , ε and
∅ respectively. For dictionaries and multimaps, they are initialized with all labels mapping to ⊥. If S is a

set or dictionary value, we write S
∪←− x in pseudocode as a shorthand for S ← S ∪ {x}, initializing it first

to ∅ if necessary. If t is a tuple, we similarly mean t ← t‖(x) by writing t ← t
∪←− x. Finally, we will write

“Define X : pred” to set X (a function or constant) in such a way that the predicate pred is true. If there
are undefined variables in pred we treat it as a random variable and expect that X is defined such that pred
will always be true.

Games. Our work uses the code-based game-playing framework of BR [7]. Let G be a game and A an
adversary. Then, we write Pr[G(A)] to denote the probability that A plays G and the latter returns true.
G may provide oracles to A, and if so we write AO1,... ,On to denote that A is run with access to oracles
O1, ... ,On.

Symmetric Encryption, IND$-security. Symmetric Encryption (SE) scheme SE defines key set SE.KS,
encryption algorithm SE.Enc and decryption algorithm SE.Dec. Encryption is randomized, taking a key
Ke ∈ SE.KS and a message M ∈ {0, 1}∗ and returns a ciphertext C ∈ {0, 1}∗. Decryption is deterministic
and takes a key and ciphertext, returning a message. SE also defines a ciphertext length function SE.cl. We
require that if C←$ SE.Enc(Ke,M) then |C| = SE.cl(|M |) and Pr[SE.Dec(Ke, C) = M] = 1. We want our

2

Game Gind$
SE (A)

b←$ {0, 1} ; Ke←$ SE.KS

b′←$AEnc ; Return b = b′

Alg Enc(m)

c1←$ SE.Enc(Ke,m)

c0←$ {0, 1}|c1| ; Return cb

Game Gprf
F (A)

b←$ {0, 1} ; Kf ←$ F.KS

b′←$AFn ; Return b = b′

Alg Fn(X)

If C[X] = ⊥ then C[X]←$ {0, 1}F.ol

c1←$ F.Ev(Kf , X) ; c0 ← C[X] ; Return cb

Fig. 1. Games used in defining IND$ security of SE scheme SE (right) and PRF security of function family F (left)

SE schemes to protect the privacy of M , so ciphertexts should be indistinguishable from a random string of
length SE.cl(|M |). We capture this with the game Gind$

SE in Fig. 1 and say that a scheme is IND$-secure if

Advind$
SE (A) = 2 Pr[Gind$

SE (A)]− 1 is small for all adversaries A.

Function Families, PRF-security. A function family F defines a key set F.KS and an output length F.ol.

It defines a deterministic evaluation algorithm F.Ev : F.KS × {0, 1}∗ → {0, 1}F.ol. We define PRF security

for function family F via the game Gprf
F depicted in Fig. 1. We say that F is a PRF if Advprf

F (A) =

2 Pr[Gprf
F (A)]− 1 is small for all adversaries A.

3 Structured Indexing for SQL data types

We now generalize CK’s definition of structured encryption and provide a new framework for modeling
encrypted SQL systems [15].

Abstract Data Types. An abstract data type ADT defines a domain set ADT.Dom, a query set ADT.QS,
and a deterministic specification function ADT.Spec : ADT.Dom× ADT.QS→ {0, 1}∗.

An example is the dictionary ADT DyAdt. DyAdt.Dom,DyAdt.QS contain all possible dictionaries D and
labels respectively (as defined in Section 2), and DyAdt.Spec(D, `) = D[`]. Multimap ADT MmAdt is defined
analogously.

Structured Indexing. We generalize Structured Encryption (StE) schemes (as defined by CK [15]) to
structured indexing (StI) schemes. These are StE schemes without a decryption algorithm. The intuition
here is that the handling of outsourced data often indexes the data in addition to encrypting it and we would
like these encrypted indexes, whatever form they take, to achieve semantic security as well. Later, we show
how this primitive allows us to modularize StE schemes. A StI scheme StI for ADT defines a set of keys
StI.KS and the following algorithms:

– Randomized encryption algorithm StI.Enc which takes a key K ′ ∈ StI.KS and an element of ADT.Dom
and returns an updated key K and index IX ∈ {0, 1}∗. This syntax generalizes that of CK by allowing key
generation to occur within or outside StI.Enc.

– Possibly randomized token generation algorithm StI.Tok which takes a key and a query from ADT.QS,
and returns fixed length token tk ∈ {0, 1}StI.tl.

– Deterministic evaluation algorithm StI.Eval which takes a token and index, and returns a ciphertext string
C ∈ {0, 1}∗.

– Finalization algorithm StI.Fin which takes K, q and an input string, and returns an output string.

Intuitively, the client indexes his data then encrypts this index with StI.Enc, storing IX on the server. At
query time, the client uses StI.Tok to generate a token and sends it to the server who runs StI.Eval, returning
C to the client. StI.Fin can be used for client-side post-processing of the data. Note that the output of
StI.Eval need not be the input to StI.Fin. In our indexing schemes the server will use the output of StI.Eval
as “pointers” to retrieve rows of SQL data stored in a different data structure which in turn form the input
to StI.Fin.

Structured Encryption. We can now define StE as a special cases of StI. Intuitively, an StE scheme is an
StI scheme where the data structure is also used to store query responses (as opposed to just indexing them).
The output of evaluation can be fed into finalization for decryption and should return the query result. To
highlight this, StE schemes have a decryption algorithm StE.Dec in place of a finalization algorithm which

3

Game Gcor
StE(A)

(DS, st)←$A(s) ; K′←$ StE.KS

If DS /∈ ADT.Dom then return false

(K,EDS)←$ StE.Enc(K′,DS)

ATok(g,EDS, st) ; Return win

Oracle Tok(q)

If q /∈ ADT.QS then win← false

M ← StE.Dec(K, StE.Eval(StE.Tok(K, q),EDS))

If ADT.Spec(DS, q) 6= M then win← false

Return tk

Game Gss
StI,L,S(A)

(DS, (q1, ... , qn), st)←$A(s)

b←$ {0, 1} ; K′←$ StI.KS

If DS /∈ ADT.Dom or {qi}ni=1 6⊆ ADT.QS then return false

If b = 1 then

(K, IX)←$ StI.Enc(K′,DS)

For i ∈ [n] do tki←$ StI.Tok(K, qi)

Else

(IX, (tk1, ... , tkn))←$ S(L(DS, (q1, ... , qn)))

b′←$A(g, IX, (tk1, ... , tkn), st) ; Return (b = b′)

Fig. 2. Games used in defining correctness for StE (structured encryption scheme for ADT) and semantic security for
StI (structured indexing scheme for ADT) with respect to leakage algorithm L and simulator S.

takes as input K, q, C and returns the query result. We define correctness via game Gcor
StE in Fig. 2 and say

that StE is correct if the advantage of all adversaries A, defined Advcor
StE(A) = Pr[Gcor

StE(A)], is low. The
correctness of our schemes will depend on the collision resistance of their function family primitives. Since
we assume these are PRFs to prove security, we will also assume that their key-lengths are sufficient to
ensure correctness.

We subdivide StE schemes into two types. We say that a scheme StErr is response revealing (RR) if
evaluation itself returns the query result. In other words, decryption must be such that StErr.Dec(K, q, C) = C
for all K, q, C. An StE scheme that is not RR is response hiding (RH).

We refer to StE for the multimap and dictionary data types as multimap and dictionary encryption
(MME/DYE) respectively. Our constructions make use of a specific dictionary encryption scheme adapted
from CJJ+’s SSE scheme

∏
bas (2Lev in the Clusion library) [12,36]. In this scheme, the encrypted data

structure is itself a dictionary D′. We start by padding all values in the input dictionary to the same length,
then for each label-value pair `,D[`], we do D′[F.Ev(Kf , `)]← SE.Enc(Ke,D[`]) where F is a pseudorandom
function family and SE is a symmetric encryption scheme. For completeness, we include the pseudocode of
this dictionary encryption scheme (which we call Dyeπ) in Appendix A. Our constructions also make use of
a generic RR multimap encryption scheme. We adapt Dyeπ to Mmerrπ (using a counter and label-dependent
Ke) as an example of such a scheme in Appendix A.

Semantic security. We define semantic security for StI using game Gss
StI,L,S depicted in Fig. 2, where

StI is a StI scheme for ADT and L,S are algorithms we refer to as the leakage algorithm and simulator
respectively. The adversary runs in a setup and guessing phase, as indicated by the first argument to it. Its
advantage is Advss

StI,L,S(A) = 2 Pr[Gss
StI,L,S(A) = 1] − 1. Note that when StI is an StE scheme we recover

CK’s non-adaptive security notion.

3.1 SQL Data Types

We now describe our notation for SQL data, queries and operations. We then define a class of ADTs we call
SQL data types to construct StE schemes for.

SQL relations, databases, schemas. SQL relation R defines a tuple of distinct attributes R.Ats =
(at1, . . . , atn). Each attribute is a bitstring at ∈ {0, 1}∗ and represents a “column” in the relation. R also
defines a table R.T consisting of n-tuples of bitstrings representing the “rows” in the relation. Given a row
(x1, . . . , xn) = r ∈ R.T, we refer to the i-th entry of the row with r[ati] = xi. We can initialize a relation
with NewRltn(at) which returns the relation with R.Ats = at and no rows.

We define a database to be a set of relations with disjoint attributes and their (distinct) identifiers, i.e.
a set of the form DB = {(id1,R1), . . . , (idN ,RN)} where i 6= j implies idi 6= idj and Ri.Ats ∩ Rj .Ats = ∅.
We denote the identifier set of such a database as DB.IDs = {idi}i∈[N] and retrieve relations by identifier
using DB[idi] = Ri. Since database attributes are non-repeating, we allow the retrieval of a table by any of
its attributes using getID (i.e. if getID(at,DB) = id then at ∈ DB[id].Ats). Similarly, if t ⊆ DB[id].Ats, then
getID(t,DB) = id.

We require that each (id,R) ∈ DB has a unique key attribute uk(id) ∈ R.Ats. This functions as a “row
number” which uniquely identifies each row. In other words, for all distinct r, r′ ∈ R.T, we have r[uk(id)] 6=

4

R1.T
uk(id1) at1

aa Alice

bb Alice

cc Bob

dd Charlie

ee David

R2.T
uk(id2) at2 at3

11 Alice Math

22 Alice Chem

33 Bob CS

44 Eve CS

55 Eve Bio

(R1 ./at1,at2 R2).T

uk(id1) at1 uk(id2) at2 at3

aa Alice 11 Alice Math

aa Alice 22 Alice Chem

bb Alice 11 Alice Math

bb Alice 22 Alice Chem

cc Bob 33 Bob CS(
σat2,Eve(R2)

)
.T

uk(id2) at2 at3

44 Eve CS

55 Eve Bio

(
σat3,CS(R1 ./at1,at2 R2)

)
.T

uk(id1) at1 uk(id2) at2 at3

cc Bob 33 Bob CS

Fig. 3. Examples of SQL relations R1,R2 and the output of join (./) and select (σ) operations on them.

r[uk(id′)]. Given some r ∈ DB[id] we refer to the tuple (id, r[uk(id)]) as its coordinates and note that it
uniquely identifies that row within the database. Additionally, we refer to the values in a “column” with
rng(at,DB) = {r[at] : r ∈ DB[getID(at,DB)]}.

A database’s schema communicates all information about DB except the tables: Schema(DB) = {(id,R.Ats) :
(id,R) ∈ DB}. As shorthand, if scma = Schema(DB) then scma[id] = DB[id].Ats and getID(at, scma) =
getID(at,DB). In our schemes, the client stores Schema(DB) as part of the key in order to appropriately
format data returned by the server. This is a result of our explicit handling of schemas, coordinates and
attributes, something which was left implicit in prior work.

SQL operations. In our work, we address the secure computation of SQL (equi)joins and (equality) selec-
tions. These operations work as follows.

The selection operation is parametrized by a pair of bitstrings (at, x), takes a relation R1 with at ∈ R.Ats
as input, and returns R = σ(at,x)(R1) where:

R.Ats = R1.Ats and R.T = {r ∈ R1.T : r[at] = x}.

In Fig. 3, we provide an example of such a selection on a relation in a database.
The join infix operation is a function parametrized by two equal-length tuples of attributes t1, t2. It takes

two relations R1,R2 with disjoint attribute sets where (ati1, ... , at
i
n) = ti ⊆ Ri.Ats. It returns R = R1 ./t1,t2 R2

where:

R.Ats = R1.Ats‖R2.Ats and R.T = {r1‖r2 : r1 ∈ R1.T, r2 ∈ R2.T,∀i ∈ [n], r1[at1i] = r2[at2i]}.

In the case of a join on singleton tuples, we abbreviate ./(at),(at′) as ./at,at′ . In Fig. 3, we provide an example
such a join. Attribute tuples can be empty in which case it returns the Cartesian product of the input rows.
This is also known as the “cross” operation ×.

ADT for SQL databases. We say that an ADT SqlDT is a SQL data type if its domain elements DB ∈
SqlDT are SQL databases which take the form DB = (DB, α) where DB is as defined in Section 3.1 and
α ∈ {0, 1}∗ is the auxiliary data. The purpose of α is to allow annotations on DB consistent with real world
applications. In this work, we use α to indicate the allowed joins, and SqlDT.Spec always returns either a
relation or ⊥.

3.2 Constructing StE for SQL Data Types Using Encrypted Indexes

Our end goal is structurally encrypted databases supporting response-hiding SQL queries. We build these
by constructing StI schemes for classes of SQL queries, then converting these into StE schemes for SQL data
types via a generic transform. We now describe this conversion, then dedicate the remainder of this work to
the abovementioned StI schemes.

StE, StI for SqlDT. Intuitively, our StE schemes handle the indexing and storage of SQL data separately.
We do the former with an StI scheme and the latter with an RH dictionary encryption scheme. This mod-
ularization simplifies pseudocode and reduces the problem of designing secure StE schemes to that of StI
schemes.

5

Alg StE.Enc(K′i ,DB)

(Kd, ED,DS)←$ EncRows(DB)

(Ki, IX)←$ StI.Enc(K′i ,DS)

Return
(
(Kd,Ki), (ED, IX)

)
Subroutine EncRows

(
(DB, α)

)
For (id,R) ∈ DB do

For r ∈ R.T do

D[(id, r[uk(id)])]← r

(Kd, ED)←$ Dyeπ.Enc(D)

For (id,R) ∈ DB do

For r ∈ R.T do

`← (id, r[uk(id)])

T[`]← Dyeπ.Tok
(
Kd, `

)
Return

(
Kd, ED, (DB, α,T)

)
Alg StE.Tok

(
(Kd,Ki), q

)
tk←$ StI.Tok(Ki, q) ; Return tk

Alg StE.Eval
(
tk, (ED, IX)

)
P ← StI.Eval(tk, IX) ; Return EvalRows(P,ED)

Subroutine EvalRows
(
(P1, ... , Pn), ED

)
For i ∈ [n] do

Ci ← {(c1, ... , cn′) : (rt1, ... , rtn′) ∈ Pi , cj = Dyeπ.Eval(rtj , ED)}
C ← (C1, ... , Cn) ; Return C

Alg StE.Dec
(
(Kd,Ki), q, C

)
Return StI.Fin(Ki, q,DecRows(Kd, C))

Subroutine DecRows
(
Kd, (C1, ... , Cn)

)
For i ∈ [n] do

Mi ← {(m1, ... ,mn′) : (c1, ... , cn′) ∈ Pi , mj = Dyeπ.Eval(rtj , ED)}
M ← (M1, ... ,Mn) ; Return M

Alg L
(
DB, (q1, ..., qn)

)
(K,ED,DS)←$ EncRows(DB) using a random function in place of F.Ev(Kf , ·)
lki←$ Li(DS, (q1, ... , qn))

Return (lki, N, L) where L,N are the max row length and # of rows in DB

Fig. 4. Algorithms and for structured encryption scheme StE = SqlStE[StI,SE,F] expressed both in pseudocode (top)
and diagrammatically (bottom left), and leakage algorithm for StE (bottom right). Here, Dyeπ is the RH dictionary
encryption scheme Dyeπ in Appendix A (which uses SE,F as primitives) and Li is StI’s leakage profile.

More formally, we construct an StE scheme for SQL data type SqlDT using the transform SqlStE which
which takes uses an StI scheme for SqlDT1 (described below), symmetric encryption scheme SE and function
family F. We capture the syntax and pseudocode of StE’s algorithms in Fig. 4. Note that StE.KS = StI.KS
and Dyeπ is the RH dictionary encryption scheme given in Appendix A which uses SE,F as primitives. It
is used in EncRows,EvalRows,DecRows, which encrypt, retrieve and decrypt the rows of database DB. We
used a specific RH dictionary encryption scheme because pathological alternatives may introduce circular
security issues, preventing a more general approach.

We now describe how the algorithms in StI and StE = SqlStE[StI,SE,F] work. During StE.Enc, algorithm
EncRows will store the rows of DB in an encrypted dictionary ED using Dyeπ.Enc. It also prepares a token
dictionary T which maps each row coordinate to a token for Dyeπ. SQL data type SqlDT1 is the same as
SqlDT except that its domain elements now take the form DS = (DB, α,T) where (DB, α) ∈ SqlDT.Dom.
The output of StE.Enc is ED and the index returned by StI.Enc(DS).

StE’s tokens are those generated by StI. As such, the server’s first step in StE.Eval is to run StI.Eval. We
require that StI.Eval returns a pointer tuple P = (P1, ... , Pn) which is a tuple of sets of tokens. The tokens in
each Pi come from T and point to rows from the same table. Algorithm EvalRows replaces each token with
relevant (encrypted) row from ED and returns ciphertext tuple C = (C1, ... , Cn), the output of StE.Eval.

During StE.Dec, algorithm DecRows decrypts each ciphertext to get plaintext tuple M = (M1, ... ,Mn).
StI.Fin takes these decrypted rows and performs any final client-side post-processing, returning the final
output relation R.

In this work, we will define three different SQL data types, each with its own StI scheme(s). To demon-
strate that all of these can be used to construct secure RH StE for their respective data type via SqlStE,

6

we demonstrate that the semantic security of StE reduces to that of its primitives. The proof follows from a
standard hybrid argument and is given in Appendix B.

Theorem 1. Let StE = SqlStE[StI,SE,F] be a correct StE scheme for SqlDT. Then given algorithms Li,S i
and adversary A we can define L as in Fig. 4 and construct S, As, Af , Ai such that:

Advss
StE,L,S(A) ≤ Advind$

SE (As) + Advprf
F (Af) + Advss

StI,Li,Si(Ai).

4 Partially Precomputed Joins

We demonstrate our framework from Section 3 in action with two SQL data types: JnDT and SjDT. The
former only supports non-recursive join queries and is presented for the purpose of introducing partially
precomputed (PP) join indexing. The latter allows recursive queries, cluster joins and equality selections,
and demonstrates how OPX’s techniques can be modified to use PP joins.

4.1 Indexing of Non-Recursive Joins

Join data type JnDT. We define JnDT.Dom to contain (DB, α) such that DB is a database and α is the
set of join queries supported (i.e. if A is the set of attributes in DB that are not unique key attributes, then
α ⊆ {(at1, at2) ∈ A× A : getID(at1,DB) 6= getID(at2,DB)}. Our goal here is to capture SQL queries of the
form “id1 join id2 on at1 = at2” where id1, id2 ∈ DB.IDs and ati ∈ DB[idi].Ats.

We allow queries to be any pair of attributes (i.e. JnDT.QS = {(at1, at2) : ati ∈ {0, 1}∗}), but JnDT.Spec
only computes the join if (at1, at2) ∈ α:

JnDT.Spec
(
(at1, at2), (DB, α)

)
= DB[getID(at1,DB)] ./at1,at2 DB[getID(at2,DB)]

and returns ⊥ otherwise. From here on we assume that all queries made are “non-trivial” meaning they
return relations with at least one row.

FP indexing. FpJn is an StI scheme that “fully precomputes” joins and is modeled after SPX’s handling
of “type-2 selections” and OPX’s handling of “leaf joins” [32,34]. The intuition here is that the output
relation for each possible join query is precomputed and pointers to the rows therein are stored as an entry
in a RR encrypted multimap. FpJn’s detailed algorithms and leakage profile are given in Fig. 5. Note that
FpJn.KS = Mme.KS and that each row in the output of a particular join is indexed as a pair of pointers to
rows in DB.

Since join queries are handled directly by Mme the leakage and efficiency of FpJn depends entirely on Mme.
For the rest of this discussion, we will assume Mme is one of the mainstream multimap encryption schemes
(e.g. [12,18,15]) with the “standard” leakage profile consisting the label space size |M.Lbls|, multimap size∑
`∈M.Lbls |M[`]|, query pattern (equality pattern of queries `1, ... , `n) and query responses M[`1], ... ,M[`n].
Notice that when a query (at1, at2) is made in FpJn, the query responses reveal the equality pattern

of columns at1, at2 for rows that appear in the join output. To illustrate, if the query is made on DB =
{(id1,R1), (id2,R2)} where R1,R2 are as depicted in Fig. 3, the server learns that the first two rows of each
Ri all have the same value in their at1, at2 columns, but won’t reveal anything about the last two rows of
each Ri apart from the fact that they are not returned in the join. Note that in the worst case, the join
returns all rows from both relations and the search pattern leakage reveals the entire equality pattern of both
columns. This leakage is comparable to PRE-based techniques like deterministic encryption or adjustable
joins (an observation also made by DPPS [20]). This is significant because, as discussed in Section 1, LAAs
are highly effective against PRE and can be applied in this case. Beyond the worst case, FP indexing leaks
strictly less than PRE-based solutions but this does not make them immune to LAAs. In particular, we
believe that attacks (such as those using `p-optimization or graph matching [37,8]) can be extended to make
use of partial equality patterns and cross column correlations, and be effective against FpJn’s leakage.

We also note that FpJn achieves lower leakage than the analogous indexing in SPX or OPX because it
uses a single multimap. The latter schemes had one encrypted multimap for each attribute (i.e. Mat1 indexes
all joins (at1, at2) ∈ α) this leaks additional metadata and tells the adversary when two queries join on the
same at1.

7

Algs FpJn.Enc
(
K′m, (DB, α,T)

)
, PpJn.Enc

(
K′m, (DB, α,T)

)
For (at1, at2) ∈ α do

For r ∈
(
DB[getID(ati,DB)] ./at1,at2 DB[getID(ati,DB)]

)
.T do

rt1 ← T[(id1, r[uk(id1)])] ; rt2 ← T[(id2, r[uk(id2)])]

M[(at1, at2)]
∪←− (rt1, rt2) ; For i ∈ {1, 2} do M[(at1, at2, i)]

∪←− rti

(Km, IX)←$ Mme.Enc(K′m,M) ; Return
(
(Km, Schema(DB)), IX

)
Alg FpJn.Tok

(
(Km, scma), q

)
Return Mme.Tok

(
Km, q

)
Alg FpJn.Eval(tk, IX)

Return
(
Mme.Eval(tk, IX)

)
Alg FpJn.Fin

(
(Km, scma), q, (M)

)
at1 ← scma[getID(at1, scma)]

at2 ← scma[getID(at2, scma)]

R← NewRltn(at1‖at2)

R.T← {r1‖r2 : (r1, r2) ∈M}
Return R

Alg PpJn.Tok
(
(Km, scma), (at1, at2)

)
mt1←$ Mme.Tok

(
Km, (at1, at2, 1)

)
mt2←$ Mme.Tok

(
Km, (at1, at2, 2)

)
Return (mt1,mt2)

Alg PpJn.Eval
(
(tk1, tk2), IX

)
Return (Mme.Eval(tk1, IX),Mme.Eval(tk2, IX))

Alg PpJn.Fin
(
(Km, scma), (at1, at2), (M1,M2)

)
For i = 1, 2 do

Ri ← NewRltn
(
scma[getID(ati, scma)]

)
Ri.T← {r : (r) ∈Mi}

Return R1 ./at1,at2 R2

Alg Lf(DS, (q1, ... , qn))

Construct M as in FpJn.Enc(·,DS)

Return Lm(M, (q1, ... , qn))

Alg Lp
(
DS, ((at1, at

′
1), ... , (atn, at

′
n))
)

Construct M as in PpJn.Enc(·,DS)

For i ∈ [n] do

q2i−1 ← (ati, at
′
i, 1) ; q2i ← (ati, at

′
i, 2)

Return Lm(M, (q1, ... , q2n))

Fig. 5. Algorithms of StI schemes FpJn,PpJn (top) and their leakage algorithms (bottom) where Mme is a RR
multimap encryption scheme. Note that in the encryption algorithm, boxed code belongs only to the respective
algorithm.

PP indexing. We introduce a new StI scheme PpJn which performs “partially precomputed” indexing,
whose algorithms are also depicted in Fig. 5. PpJn.Enc proceeds in the same way as FpJn.Enc but we store
the rows from each input relation separately. In other words, if Mf ,Mp are the multimaps constructed in
the respective setup algorithms, then Mp[(at1, at2, i)] = {rti : (rt1, rt2) ∈ Mf [(at1, at2)]} for i = 1, 2 and
(at1, at2) ∈ α. Notice that this means the client needs to reassemble the output relation from the two sets
of rows in StI.Fin. We recommend that the client do so by sorting then joining the columns, avoiding the
quadratic time nested loop join where rows are compared pairwise.

This small change in indexing technique has substantial impact on bandwidth and security. In the worst
case, the number of rows sent with FP is quadratic while PP’s is linear. This bandwidth reduction occurs
because two sets of rows are sent instead of their cross product. Notice that modulo some metadata in-
formation (i.e. the multimap sizes), the PP leakage can be derived from the FP leakage meaning that PP
indexing is no worse than FP indexing. In fact, if more than one row is returned to any query PP leakage
is strictly lower. To illustrate, when join query (at1, at2) is made to the aforementioned database in Fig. 3,
the adversary sees that the first three rows of both tables were returned and can infer that each row has at
least one matching value in the other column – nothing specific about their equality patterns.

In summary, PpJn is the superior indexing choice for JnDT because its leakage is strictly lower, bandwidth
is no worse and efficiency is comparable.

Semantic security. The security of FpJn,PpJn reduce to that of Mme. The proof follows directly from the
definition of Mme’s semantic security and is given in Appendix C.

Theorem 2. Let L,S be the leakage algorithm and simulator for Mme. Let Lf ,Lp be the leakage algorithms
given in Fig. 5. Then, given adversary A these exists adversary Am and simualtor Sp such that:

Advss
FpJn,Lf ,S(A) ≤ Advss

Mme,L,S(A) and Advss
PpJn,Lp,Sp(A) ≤ Advss

Mme,L,S(Am).

8

4.2 PP indexing for recursive queries

SjDT. We expand the query support of JnDT to include equality selections, cluster joins (joins on more
than one attribute) and recursively defined queries. The resultant query class is similar to the SPJ algebra
defined by CM [14] except for the omission of the projection operation which we note can be handled as a
post-processing step requiring no cryptographic techniques.

We capture this via the SQL data type SjDT. Its domain is unchanged from JnDT.Dom except that α
allows tuple pairs in addition to attribute pairs. Below we describe the forms, evaluation and SQL equivalent
of q ∈ SjDT.QS. (Note that the r, s, j flags are included in SjDT queries for domain separation.) These are
defined recursively so qi,qi are themselves queries of the respective type.

Query Type SjDT query q SjDT.Spec(q,DB) SQL query q

Relation
retrieval

(r, id) DB[id] where DB = (DB, α) select * from id

(Equality)
selections

(s, at, x, q1) σ(at,x)(SjDT.Spec(q1,DB))
select * from q1

where at = c

(Equi)joins
(j, t1, t2, q1, q2)

where (t1, t2) ∈ α
(SjDT.Spec(q1,DB)) ./t1,t2

(SjDT.Spec(q2,DB))
select * from q1

join q2 on t1 = t2

We say that queries of the form (r, id), (s, at, x, (r, id)) or (j, t1, t2, (r, id1), (r, id2)) are non-recursive and
all others are recursive. We require that all attributes in each ti come from the same relation in DB (i.e.
ti ⊆ DB[id].Ats for some id ∈ DB.IDs). While allowing cluster joins may lead to an exponential-size index, a
judicious database administrator would not allow this – cluster joins are rarely used and usually known in
advance.

Hashset filtering. To minimize the leakage of recursive queries in our StI schemes we employ the filtering
hashset technique introduced in OXT [13]. We now review this technique and establish some notation for it.

This filtering hashset is a set denoted HS containing outputs of a function family F where F.KS = {0, 1}F.ol.
In our algorithms, the hashset will be used to associate predicate bitstrings with a row tokens (from T).
Later, given a predicate p’s key K = F.Ev(Kf , p) we can filter a set of row tokens, retaining only those which
satisfy the predicate. We formalize this via the following algorithms:

Alg HsEnc(Kf , SET)

For (p, rt) ∈ SET do

HS
∪←− F.Ev

(
F.Ev(Kf , p), rt

)
Return HS

Alg HsFilter(K, (P1, ... , Pn),HS)

For i ∈ [n] do

For rt ∈ rt ∈ Pi if F.Ev(K, rt) ∈ HS then S
∪←− rt

If S 6= ∅ then Pi ← S

Return (P1, ... , Pn)

For notational convenience in our pseudocodes, HsFilter takes as input a tuple set P = (P1, ... , Pn). It then
attempts to filter each Pi and retain only the tuples where at least one rt satisfies the predicate. However, if
no such tuple exists, it does not perform the filtering at all.

PP indexing for SjDT. We are now ready to extend the PP indexing technique introduced in Section 4 to
construct StI for SjDT. On a high level, we do so by using an inverted index (similar to those used for SSE)
to handle selections and a filtering hashset to handle recursively defined queries. The result is StI scheme
PpSj whose algorithms are depicted in Fig. 6.

Now we provide some intuition for PpSj’s algorithms. The scheme has two server-side data structures:
an encrypted multimap and a hashset. The multimap is used to index non-recursive queries my mapping a
query-derived label to the relevant rows in the database. For example, the label for relation retrieval query
(r, id) is the query itself and its values are row tokens associated to rows in DB[id] (i.e. {(T[(id, r[uk(id)])]) :
r ∈ DB[id].T}). Note that the latter are singleton tuples because we required that pointer tuples be made
out of tuples of tokens. The hashset is used to filter the sets in a pointer tuple during a recursive query.
For example, when processing the query (j, t1, t2, (s, at, x, (r, id1)), (r, id2)) (a select followed by a join),
the server would use the multimap to retrieve row tokens for each of the non-recursive subqueries (i.e.
(s, at, x, (r, id1)) and (r, id2)). The token would also include two keys which can be used with HsFilter which
tests if the rows being pointed to (in DB[id1] or DB[id2]) are in DB[id1] ./t1,t2 DB[id2].

9

Alg PpSj.Enc
(
K′m, (DB, α,T)

)
For all (id,R) ∈ DB and r ∈ R.T do

rt← T[(id, r[uk(id)])] ; M[(r, id)]
∪←− (rt)

For at ∈ R.Ats where at 6= uk(id) do

M[(s, at, r[at])]
∪←− (rt) ; SET

∪←−
(
(s, at, r[at]), rt

)
For (t1, t2) ∈ α do

id1 ← getID(t1) ; id2 ← getID(t2)

For r ∈
(
DB[id1] ./t1,t2 DB[id2]

)
.T do

For i = 1, 2 do

rt← T[(idi, r[uk(idi)] ; M[(j, t1, t2, i)]
∪←− (rt)

SET
∪←−
(
(j, t1, t2, i), rt

)
(Km,EM)←$ Mme.Enc(K′m,M) ; Kf ←$ F.KS ; HS← HsEnc(Kf ,SET)

Return
(
(Schema(DB),Km,Kf), (EM,HS)

)
Alg PpSj.Tok

(
(scma,Km,Kf), q

)
If q = (r, id) then return

(
r,Mme.Tok(Km, (r, id))

)
Else if q = (s, at, x, (r, id)) then return

(
r,Mme.Tok(Km, (s, at, x))

)
Else if q = (s, at, x, q1) then

tk1←$ PpSj.Tok
(
(scma,Km,Kf), q1

)
Return

(
s,F.Ev(Kf , (s, at, x)), tk1

)
Else if q = (j, t1, t2, q1, q2) then

For i = 1, 2 do

If qi = (r, idi) then tki←$

(
r,Mme.Tok(Km, (j, t1, t2, i))

)
Else

tk′←$ PpSj.Tok
(
(scma,Km,Kf), qi

)
tki ←

(
s,F.Ev(Kf , (j, t1, t2, i), tk′)

)
Return (j, tk1, tk2)

Alg PpSj.Eval(tk, IX)

(EM,HS)← IX

If tk = (r, tk1) then

Return (Mme.Eval(tk, IX))

Else If tk = (s,K, tk1) then

P ← PpSj.Eval(tk1, IX)

Return HsFilter(K,P,HS)

Else if tk = (j, tk1, tk2)

For i = 1, 2 do

P i ← PpSj.Eval(tki, IX)

Return P 1‖P 2

Alg PpSj.Fin(Ki, q, (M1))

(scma,Km,Kf)← Ki

If q = (r, id) then

R← NewRltn(scma[id])

R.T← r : (r) ∈M1 ; Return R

Else if q = (s, at, x, q1) then

Return PpSj.Fin(Ki, q1, (M1))

Else if q = (j, t1, t2, q1, q2) then

Define M1,M2 : M1‖M2 = M1,

M1 has as many Mi as qi has

subqueries of the form (r, id)

For i = 1, 2 do

Ri ← PpSj.Fin(Ki, qi,M
i)

Return R1 ./t1,t2 R2

Fig. 6. Algorithms for PpSj the StI scheme for SjDT using PP indexing.

FP indexing for SjDT. We analogously extend FpJn introduced in Section 4 to construct FpSj, an StI for
SjDT. Just like with PpSj, non-recursive queries will be added to the encrypted multimap that is used to
index the non-recursive joins while all recursive queries are filtered using the hashset. The only subtlety in
this extension is the handling of “internal joins” which are queries of the form q = (j, t1, t2, (r, id), q1) (or
q = (j, t1, t2, q1, (r, id))) because we want to limit the row tokens leaked from id to those who join with some
row returned by q1. Similar to OPX, we construct an index where each row token returned in the subquery
will “point to” the tokens of the rows joined to in DB[id]. As alluded to in Section 3.2, this self-referential
indexing (where Mme tokens are stored in M) may introduce circular security issues if pathological Mme
primitives are used. We avoid this by indexing internal joins with a specific, non-pathological primitive (as
was done in OPX). To avoid the increased leakage and complexity of an additional data structure, we will
assume that Mme is the Mmerrπ scheme recounted in Appendix A and co-locate this index with the one used
for non-recursive queries. Notice that this subtlety does not come up in PpSj because we do not reveal join
equality patterns so all recursive joins can be handled similarly.

The StE scheme StE = SqlStE[FpSj,SE,F] is essentially the same as OPX with minor improvements in
leakage (analogous to those described in our discussion of FpJn in Section 4) and a slightly revised approach
to “internal joins”. For this reason, we defer a complete description of FpSj to Appendix E.

PpSj leakage profile. While a pseudocode description of PpSj’s leakage profile may seem convoluted, we
believe the intuition behind it enables helpful comparisons with FpSj and OPX [34]. As such, we aim to give
some intuition by describing the components of PpSj’s leakage profile via a running example, deferring a full
description of PpSj’s leakage algorithm and the associated security proof to Appendix D. Below, we assume
that MME primitives have the “standard” leakage profile (as described in Appendix A).

Our example database contains R1,R2 from Fig. 3. If no queries are made, the server-side data structures
reveal only metadata leakage. This includes the number of values in the multimap, the maximum-length of

10

a value in the multimap and the number of F outputs in the hashset. The leakage of FpSj is comparable but
on OPX it is higher because different data structures are used to index different SQL operations.

We will refer to all other forms of leakage as “query dependent leakage”. This is where PP indexing has
substantial savings over FP and OPX.

Now lets assume the client makes the following queries: q1 = (s, at3, CS, (r, id2)), q2 = (s, at2, Eve, (r, id2)),
q3 = (r, id1) and q4 =

(
j, at1, at2, (r, id1), (s, at3, CS, (r, id2))

)
. The server will receive four tokens, where

tk1, tk2, tk3 are such that tki = (r,mti) and tk4 =
(
j, (r,mt4), (j,K,mt5)

)
. Here, each mti is a token for

Mme while K is a hashset key. Just from inspecting these, the adversary learns the recursion structure of
the queries. Specifically, he learns that the first three queries were non-recursive while q4 was a join followed
by a select. This leakage is slightly lower in FpSj,PpSj compared to OPX because the adversary cannot
differentiate between non-recursive selections and relation retrievals.

The Mme tokens leak the multimap query pattern and multimap responses. The former reveals whenever
the associated query or subquery is repeated. In our case, the adversary learns that mt1,mt5 are associated to
the same query. Note that this does not extend to mt3,mt4 because the latter is in a join. From the multimap
query responses he “sees” the row tokens that are returned by each Mme.Eval(mti,EM). This reveals the
equality pattern of the rows returned by each associated query/subquery. For example, this reveals that q1, q2
both return two rows, one of which is shared. On join queries, we enjoy similar leakage savings as described
in the non-recursive case. For example, tk4 will reveal that three rows are returned from the left relation (i.e.
id1) but doesn’t say anything about whether they are in the final output relation or how they “match up”
with rows from the right relation. In FpSj and OPX, both of the above are revealed.

Finally, the hashset keys reveal the hashset key query pattern and hashset filtering results. The former
reveals when the exact same predicate is repeated and is detectable because the keys would be the same.
The latter is because the adversary is free to apply hashset keys (in the tokens) to filter all the row tokens
he can retrieve from EM thereby learning the hashset filtering results. This means that using K he can learn
that one row returned by q2 satisfies the predicate associated to K even though it is not in the output of
q4. Similarly, he learns that two rows returned by q1 satisfies the predicate but only one is returned by q4.
Using FpSj the adversary would additionally learn which row returned in q3 is “paired up” with this row in
the q4 output.

Leakage comparison. From the above discussion, one might expect decreasing query-dependent leakage
from PpSj to FpSj to OPX. While the leakage for FpSj can always be derived from OPX, the comparison of
PpSj to FpSj is not as straightforward because they sometimes do not return the same rows when recursive
queries are made (which we discuss in more detail below).

However, when restricted to non-recursive queries, PpSj’s query-dependent leakage is strictly superior for
the same reasons that PpJn was superior in Section 4. Extending this, we can upper bound the leakage lkp
of PpSj on queries q1, ... , qn with its leakage lk′p on the minimal set of non-recursive queries q′1, ... , q

′
m with

which the server can still deduce the pointer tuples it should return on q1, ... , qn. Doing the same for FpSj,
we have lkf ≤ lk′f as well. Then, via the above observation about non-recursive queries we have lk′p ≤ lk′f ,
with the inequality being strict if at least one join query with at least two rows is made. Our being able to
bound PpSj’s query-dependent leakage lower than FpSj’s gives credence to the intuition that PpSj is the more
secure variant in practice.

Efficiency drawback of PpSj. Comparing the bandwidth of PpSj,FpSj is also not clear cut: On non-
recursive queries, PpSj will perform equal or better than FpSj but on recursive queries the converse is
sometimes true.

Consider the query q = (s, at3, CS, (j, at1, at2, (r, id1), (r, id2))) in our toy example. With FpSj, the
server returns pointers to the two rows that feature in the output relation (i.e. those with coordinates
(id1, cc), (id2, 33)) but PpSj returns four (i.e. with coordinates (id1, aa), (id1, bb), (id1, cc), (id2, 33)) because
without the equality pattern over the join columns and it cannot filter out the first and second rows of R1.

More generally, this overhead may occur anytime that a recursive query (involving at least one join) is
made and grows with query complexity. Depending on the data and query workload, this overhead ranges
from negligible to quite substantial, something we explore further in Section 6.

11

Fig. 7. Data/ query processing in unencrypted SQL databases (left) and the analogous processes using SqlStE with
hybrid indexing (right).

5 Hybrid indexing

We showed that the choice between FP and PP indexing depends heavily on query load. This motivates
our hybrid StI scheme that postpones this decision till query time. We first cover the technical details of
supporting both indexing techniques, then give a heuristic for the client to choose between them.

Hybrid data processing. We give a new ADT where each join in a query is annotated with the desired
indexing technique, HybDT. This ADT is equivalent to SjDT except that its join queries take the form
(op, t1, t2, q1, q2) where op ∈ {fp, pp}. When evaluating HybDT.Spec, these are both functionally equivalent
to the analogous SjDT join query’s (j, t1, t2, q1, q2).

The hybrid system we envision makes the same assumption as in (unencrypted) SQL DBMSes – that
client queries are unoptimized and have no canonical form – and therefore mirrors its data flow as depicted
in Fig. 7. It also borrows its architecture (i.e. use of a client-side proxy) from existing encrypted SQL
solutions [39,43]. The client’s SjDT query is annotated using a heuristic optimizer to get a HybDT query.
This latter query is then tokenized, evaluated and decrypted using hybrid indexing scheme HybStI in StE =
SqlStE[HybStI,SE,F].

As best we know, no existing work has looked into query optimization in StE schemes. We believe this
area to be of independent interest because unlike encrypted systems where optimization runs on the server
(with full access to the data) and is solely interested in maximizing efficiency, optimization in encrypted SQL
DBMSes should be done (at least partially) by the proxy with only precomputed statistics about the data
and may additionally seek to minimize leakage. We initiate this study with our heuristic below.

HybStI details. This StI merges FpSj,PpSj by essentially storing both kinds of indexes on the server. More
specifically, HybStI.Enc will merge the multimaps and hashsets generated by PpSj,FpSj (avoiding repetition
where possible) so that it can take join tokens of either form. When a HybDT join query is made, the client
indicates which index to use in its query with op.

We believe the intuition for how HybStI works is straightforward, so we defer a full discussion on its
pseudocode, leakage algorithm and security to Appendix F. The only subtlety comes when a query contains
both FP and PP joins. Notice that pointer tuples in this case will contain more than one Pi (unlike FpSj) and
the tuples in at least one Pi will contain more than one rt (unlike PpSj). As such, after the client performs
the PP joins in HybStI.Fin some column reordering may be necessary.

HybStI leakage. We will describe HybStI’s leakage profile in comparison to that of PpSj and FpSj. The
metadata leakage is comparable, with each size (multimap or hashset) being the sum of respective FpSj and
PpSj sizes. The recursion structure leakage is technically higher but only because we leak the join annotations
that weren’t present in the other two schemes.

For the same reason that PpSj and FpSj’s query-dependent leakages were not directly comparable, they
also cannot be compared with that of HybStI. However, like we did in Section 4.2, we can upper bound
HybStI’s query-dependent leakage on q1, ... , qn ∈ HybDT.QS with that of q′1, ... , q

′
m, the minimal set of non-

recursive queries in HybDT.QS (with consistent join annotation) with which the server can still compute its
output on q1, ... , qn. This leakage is no better than the analogous bound in PpSj and no worse than that

12

of FpSj, this confirms the intuition that hybrid indexing achieves an intermediate level of query-dependent
leakage compared to solely using FP or PP indexing.

Leakage-aware query planning. The join annotation selected by our query planning heuristic will mini-
mize leakage without exceeding a predetermined bandwidth limit. More specifically, suppose the user supplies
a query q ∈ SjDT with J joins and a bandwidth limit L indicating the maximum number of rows from ED
that can be returned in the ciphertext tuple. We estimate the bandwidth of all possible HybDT queries, then
select an annotation by:

1. Eliminating options which exceed L rows. If none remain, return ⊥.
2. Maximize number of PP joins
3. If multiple choices remain, minimize bandwidth.

We argue that our setup is realistic because (1) we expect the J joins made in a query to be modest enough
for the client to evaluate all 2J HybDT queries, (2) bandwidth measurement can be reduced to the number
of rows from ED sent as they are padded to the same length, and (3) is it common for SQL applications to
limit bandwidth to prevent the client from maxing out its memory.

Alg EvalBW(q)

If q = (r, id) then B[(id)]← N (id)

Else if q = (s, at, x, q1) then

B← EvalBW(q1) ; id← getID(at, scma)

B[(id)]← B[(id)] · Hat(x)

Else if q = (op, t1, t2, q1, q2) then

B← EvalBW(q1) ∪ EvalBW(q2)

For i = 1, 2

Define ii : getID(ti, scma) ∈ ii ∈ B.Lbls

If op = fp then

N ← F(t1,t2)·B[i1]·B[i2]
N (getID(t1,scma))·N (getID(t2,scma))

B[i1‖i2]← 2 ·N
B[i1]← ⊥ ; B[i2]← ⊥

Else if op = pp then

For i = 1, 2 do

B[ii]← Pi(t1, t2) · B[ii]
N (getID(ti,scma))

Return B

Schema scma

Return Schema(DB)

Table size N (id)

Return |DB[id].T|

Freq. histogram Hat(x)

R← σ(at,x)(DB[getID(at, scma)])

Return |R.T|
N (id)

FP join size F(t1, t2)

For i = 1, 2 do idi ← getID(ti, scma)

R← DB[id1] ./t1,t2 DB[id2]

Return |R.T|

PP join sizes Pj(t1, t2)

For i = 1, 2 do idi ← getID(tj , scma)

R← DB[id1] ./t1,t2 DB[id2]

Return |{r[uk(idj)] : r ∈ R.T}|

Fig. 8. EvalBW algorithm (left) defined in terms of precomputed statistics (right) stored on the client. Our heuristic
assumes that q incurs bandwidth

∑
i∈B.Lbls B[i] where B = EvalBW(q).

To complete this setup, we need a way for the client to estimate the bandwidth of a query with only
partial information about DB computed during setup. These precomputed statistics are listed on the right
of Fig. 8 and the bandwidth estimation algorithm is EvalBW. Intuitively, EvalBW will populate a dictionary
B with entries B[i] representing the bandwidth for the ciphertext set containing rows from all DB[id] where
id ∈ i. We estimate that a query q ∈ HybDT.QS incurs bandwidth

∑
i∈B.Lbls B[i] where B = EvalBW(q). We

will next explore the tradeoffs involved in storing these statistics.

Memory tradeoffs. Notice that the client storage required for the precomputed statistics (as given in
Fig. 8) increases with number of joins (i.e. |α|) and size of histograms (i.e. |rng(at,DB)| for each at). In
practice, data may be too complex or client devices may be too memory strapped (e.g. mobile devices)
to store this in full. We describe two tradeoffs application designers can explore to better fit their system
requirements.

When it is unfeasible to store full frequency histograms for some at, the client can partition rng(at,DB)
into ranges and store this bucketed frequency histogram. EvalBW will approximate Hat(x) by assuming that
values within a bucket are uniformly distributed. This approach is used in SQL server and the literature
recommends 200 equiDepth (as opposed to equiWidth) buckets [41,10]. In the extreme case, the client uses
a single bucket and needs only store |rng(at,DB)| and uses Hat(x) ≈ 1

|rng(at,DB)| . Note that this only works

when the elements of rng(at,DB) can be closely approximated and ordered. For example, this may not work

13

Query
Type

Indexed
Data

Chicago data set Sakila data set
JnDT SjDT HybDT JnDT SjDT HybDT

FpJn PpJn FpSj PpSj HybStI FpJn PpJn FpSj PpSj HybStI
Non-recur-

sive join
MM lbls 1249 2498 1249 2498 3747 631 1262 631 1262 1893
MM vals 1.495e10 2.796e7 1.495e10 2.796e7 1.498e10 5.103e8 2.201e6 5.103e8 2.201e6 5.125e8

Recursive
join

MM lbls – – 2.796e7 – 2.796e7 – – 2.202e6 – 2.202e6
MM vals – – 1.496e10 – 1.496e10 – – 5.107e8 – 5.107e8
HS vals – – 7.477e9 2.796e7 7.505e9 – – 2.552e8 2.201e6 2.574e8

Relation
retrieval

MM lbls – – 15 15 15 – – 15 15 15
MM vals – – 4.010e5 4.010e5 4.010e5 – – 4.409e4 4.409e4 4.409e4

Select
MM lbls – – 1.082e6 1.082e6 1.082e6 – – 1.190e5 1.190e5 1.190e5
MM vals – – 5.749e6 5.749e6 5.749e6 – – 2.945e5 2.945e5 2.945e5
HS vals – – 5.749e6 5.749e6 5.749e6 – – 2.945e5 2.945e5 2.945e5

Total
MM lbls 1249 2498 2.905e7 1.085e6 2.905e7 631 1262 2.321e6 1.203e5 2.322e6
MM vals 1.495e10 2.796e7 2.991e10 3.412e7 2.994e10 5.103e8 2.201e6 1.021e9 2.540e6 1.023e9
HS vals – – 7.483e9 3.371e7 7.511e9 – – 2.555e8 2.496e6 2.577e8

Fig. 9. Simulated server storage for each data set using each of our schemes in terms of multimap (MM) labels/
values and hashset (HS) values broken down by the query type being indexed (i.e. relation retrievals, non-recursive/
recursive joins, or selections).

with a “name” column because the names in rng(at,DB) are not dense in any easily enumerated set. In
general, bucketing sacrifices the accuracy of EvalBW to reduce client memory. We study this tradeoff more
in Section 6.

Above, we assumed the client would pre-compute and store the join sizes. When this is infeasible due
to memory constraints, the client can alternatively compute join sizes using table sizes and the Hat(x)
during EvalBW whenever rng(at) is enumerable. Notice that we can express each co-occurrence frequency
as a function of the relevant occurrence frequencies. With a single attribute join, let X = rng(at1,DB) ∩
rng(at2,DB), Ni = N (getID(ati, scma)) then

F(at1, at2) = N1 ·N2 ·
∑
x∈X
Hat1(x) · Hat2(x) and Pj(at1, at2) = Nj ·

∑
x∈X
Hatj (x).

We can extend this to a cluster join (t1, t2) where tj = (atj1, ... , at
j
n). We substitute the above histogram

values for Htj (x1, ... , xn) and take the sum over all (x1, ... , xn) where xi ∈ rng(at1i ,DB)∩ rng(at2i ,DB). These
frequencies are approximated by assuming that columns are independently distributed: Hti(x1, ... , xn) ≈∏
i∈[n]Hatji (xi). Note also that accuracy issues are compounded if frequency histograms are themselves

estimated using bucketing. In general, approximating join sizes trades efficiency (of EvalBW) and accuracy
(for cluster joins) to reduce memory.

6 Simulations on Real-World Datasets

To get some indication of how our schemes would fare in practice we simulate the storage and bandwidth
they would incur in a real-world context. We show that in practice, PP indexing is likely to be more storage
efficient than FP. We also confirm three claims made in this work: (1) PP indexing has equal or better
bandwidth than FP on non-recursive joins (i.e. JnDT queries), (2) On recursive selects and joins (i.e. SjDT
queries), the analogous choice is data and query dependent, and (3) our heuristic is accurate in finding
optimal hybrid query execution plans.

We note that our goal here is not to make broad statements about all SQL data nor to perform a
full system evaluation. We see our simulations more as a sanity check which might motivate large-scale
implementations of our schemes. Additionally, we are not aware of any benchmarks with just join and select
queries so we generate our own as described below.

Simulation setup. Our simulation dataset uses all relations from the MySQL Sakila benchmark 3 and the
following fifteen frequently accessed relations from Chicago’s Open Data Portal: Bike Racks, Census Data,

3 We excluded the film text relation since it is a subset of the film relation

14

Join category # joins
Ratio of FpJnto PpJn BW
Min Ave Max

One-one 237 1.0 1.0 1.0
One-many 711 1.0 1.8 2.0

Many-many 932 1.5 465 8000

Fig. 10. Breakdown of all possible non-recursive join queries which returns at least one row by join types. For each
type, we simulated the number of rows that would be sent using FP and PP indexing, and report the minimum,
average and maximum overhead incurred.

Crimes 2019, Employee Debt, Fire Stations, Grafitti, Housing, IUCR Codes, Land Inventory, Libraries, Lobby-
ists, Police Stations, Reloc Vehicles, Street Names, Towed Vehicles. In total, our setup involved 30 relations,
175 attributes and 219,992 rows. In Appendix G, we present some additional summary statistics to better
understand our source data. We also provide a full, annotated source code for our simulations in [40].

We include in α all single-attribute joins that return at least one row. This helps to filter out meaningless
join queries (e.g. joining on “language” and “actor”). We consider joins within the Sakila relations and joins
within the Chicago relations, but we do not attempt joins between the two independent sources. We generate
recursive queries with J joins and S selections by selecting uniformly at random J distinct joins from α as
well as S attributes and elements of their domains, discarding queries that return no rows. When J ≥ 2 we
only use input tables with less than 1000 rows to avoid very large output relations.

Server storage. With the above setup we can get an idea of how much server-side storage would be
required by each of our indexing schemes. Recall that our schemes make use of a RR multimap primitive
and/or a hashset filtering primitive. Therefore, in Fig. 9 we report the number of multimap 4 labels and
values as well as the values in hashset HS for each of our StI schemes. We present our simulation results
for the two datasets separately since the Chicago data set contains many more rows and would dominate
the Sakila statistics. Additionally, we also show a breakdown of these statistics in terms of the queries they
index to better understand the cost of each type of query support.

A number of observations can be made from this data. In our simulation we see that even though there
are more selections to index (as evidenced by the number of labels), the multimap size (i.e. number of values)
is dominated by join indexes. We expect this cost to be lower in a real system because a judicious database
administrator can reduce the set of supported joins (α) to a smaller number than we did. Our simulation
also brings forth another advantage of PP join indexing – it is more storage efficient by several orders of
magnitude. This is because each row token is stored at most once per join (the same thing which causes PP
to have better bandwidth) and, in the case of SjDT, there is no need for the “internal join” indexing which
essentially doubles the multimap’s labels and values. Finally, for the above reason, the storage overhead of
hybrid indexing over FP indexing is very small so systems which currently use indexing schemes like FP (e.g.
OPX or SPX) can upgrade its security at low cost.

Join categories. We partition joins into three classes which behave quite differently: one-one, one-many
and many-many. We say that a join R ← R1 ./at1,at2 R2 is one-one if each row in R1,R2 occurs at most
once in R. It is one-many if the above is true for one relation but not for the other. It is many-many if there
exists rows in both R1,R2 which occur more than once in R. We record the breakdown of these classes in
our datasets in Fig. 10.

StI for JnDT. In Section 4 we showed that PP indexing has superior bandwidth on non-recursive join
queries. We demonstrate that these savings by computing all 1880 possible joins in α and report our findings
in Fig. 10. As one would expect, PP indexing always performs equal or better to FP – they perform equally for
one-one joins but there are moderate and significant savings for one-many and many-many joins respectively.

StI for SjDT. In Section 4.2 we noted that neither PP nor FP joins are strictly superior when it comes to
recursive SjDT queries. We demonstrate this using our datasets. For each combination of 1 to 3 joins and
0 to 2 selects, we randomly sampled 25 queries and report the results in Fig. 11. As can be seen, neither
scheme can reliably achieve the optimal bandwidth. While FpSj performed better on average, its maximum
overhead exceeds that of PpSj in about half the cases.

4 Note that in the case of FpSj,HybStI, this includes the multimap for internal joins.

15

Query

type

Ratio of BW to ideal

FpSj PpSj

Min Ave Max Min Ave Max

1 ./, 0 σ 1.0 9.6 37 1.0 1.0 1.0

1 ./, 1 σ 1.0 1.6 4.0 1.0 60 302

1 ./, 2 σ 1.0 1.3 2.0 1.0 90 500

2 ./, 0 σ 1.0 3.3 57 1.3 13 54

2 ./, 1 σ 1.0 15 201 1.0 41 201

2 ./, 2 σ 1.0 14 121 1.0 93 535

3 ./, 0 σ 1.0 7.2 48 2.4 9.1 17

3 ./, 1 σ 1.0 6.5 63 2.6 23 60

3 ./, 2 σ 1.0 5.0 61 2.3 30 84

Query

type

Bucketed B = 1 Bucketed B = 200 Full histograms

Correct
Wrong

Correct
Wrong

Correct
Wrong

R1 R2 R3 R1 R2 R3 R1 R2 R3

1 ./, 0 σ 14 11 0 0 25 0 0 0 25 0 0 0

1 ./, 1 σ 6 17 0 6 12 0 12 1 16 0 8 1

1 ./, 2 σ 5 0 0 20 14 0 1 10 15 0 0 10

2 ./, 0 σ 5 0 0 20 21 3 0 1 25 0 0 0

2 ./, 1 σ 15 0 1 9 18 6 1 0 24 0 1 0

2 ./, 2 σ 17 8 0 0 20 0 1 4 23 0 0 2

3 ./, 0 σ 5 20 0 0 8 10 7 0 21 2 2 0

3 ./, 1 σ 2 23 0 0 19 1 5 0 25 0 0 0

3 ./, 2 σ 7 18 0 0 16 4 5 0 24 0 1 0

Fig. 11. Left: On randomly generated queries involving the indicated number of joins (./) and selects (σ), we report
the minimum, average and maximum ratios of rows sent using each indexing technique compared to the theoretical
minimum possible. Right: Using the same queries, we report the accuracy of our heuristic under three different client
storage settings. When a suboptimal query execution plan is returned, we report the point at which our heuristic
fails (with R3 being the closest to success).

Hybrid StI. In Section 5 we provided a heuristic for client-side leakage-aware query planning. We demon-
strate its efficacy when frequency histograms are estimated via three bucketing options: B = |rng(at,DB)|
(full histograms), B = 200 and B = 1. We use the same 225 queries as the SjDT simulations and set the
bandwidth limit L for each q ∈ SjDT to be the mean incurred by all 2J possible HybDT queries to ensure
that the optimization is non-trivial. Additionally, join sizes F ,P1,P2 are estimated using the histogram.
Therefore, our simulation is conservative and we expect our heuristic to perform better in applications with
a fixed L and precomputed join sizes.

In Fig. 11 we show how our heuristic performed for each query type and histogram estimation technique.
When the optimal join annotation is not returned we note which “level” the heuristic failed at, where the
levels are defined in relation to our definition of “optimality” given in Section 5. In particular, an R1 failure
means the returned q′ exceeds bandwidth limit L when StE.Eval is run, an R2 failure means q′ used more
FP joins than was necessary to reduce bandwidth below L and an R3 failure means q′ was not the smallest
bandwidth option which uses the minimal number of FP joins while meeting L.

Unsurprisingly, there is a direct tradeoff between client memory and the heuristic’s accuracy: across all
225 queries, the heuristic returned the optimal q′ on 198 with full histograms but only 143 and 76 when
B = 200 and B = 1 respectively. More interestingly, our heuristic seems to improve when the search space
increases: when there is one join the heuristic performed slightly better averaged across all three B values
than guessing (58.7% vs 50%) but when there are three it performs significantly better (56.4% vs 12.5%).
This demonstrates that our heuristic works when it is most needful since we expect the bandwidth overhead
from an incorrect choice to increase with query complexity.

7 Conclusion

Our work introduces partially precomputed join indexing and incorporates it into a hybrid StE scheme. While
we did not explore it in this work, we believe that our schemes can be extended to support dynamic queries
and adaptive security via multimap primitives of the same kind. We believe the former can be achieved
in a similar way to KM’s extension of SPX to SPX+. To achieve the latter, our schemes can be reframed
in JN’s model for adaptive compromise [30]. Future work can also extend our query support, possibly by
incorporating cryptographic techniques for range queries or aggregations [22,29]. Higher query support would
also enable more rigorous testing using real-world applications and query benchmarks. Stronger security can
be achieved using lower-leakage indexing primitives [31,38,33].

We also introduce leakage-aware query planning which we believe to be of independent interest as it
incorporates structured indexing into DBMS architecture, which may help StE become a part of commercial
DBMSes. Future work could improve our heuristic’s efficiency and accuracy, or develop analogous hybrid
schemes for other query classes.

16

8 Acknowledgements

We would like to thank the anonymous reviewers for their comments on our work. We are also grateful to
Mihir Bellare and Francesca Falzon for discussion and insights. Cash was supported in part by NSF CNS
1703953. Ng was supported by DSO National Laboratories. Rivkin was supported by the Liew Family College
Research Fellows Fund.

References

1. encrypted-bigquery-client. https://github.com/google/encrypted-bigquery-client, 2015.
2. City of chicago data portal. https://data.cityofchicago.org/, 2021.
3. Sakila sample database. https://dev.mysql.com/doc/sakila/en/, 2021.
4. P. Antonopoulos, A. Arasu, K. D. Singh, K. Eguro, N. Gupta, R. Jain, R. Kaushik, H. Kodavalla, D. Kossmann,

N. Ogg, et al. Azure sql database always encrypted. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 1511–1525, 2020.

5. S. Bajaj and R. Sion. Trusteddb: A trusted hardware-based database with privacy and data confidentiality. IEEE
Transactions on Knowledge and Data Engineering, 26(3):752–765, 2013.

6. J. Bater, G. Elliott, C. Eggen, S. Goel, A. Kho, and J. Rogers. Smcql: secure querying for federated databases.
Proceedings of the VLDB Endowment, 10(6):673–684, 2017.

7. M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages
409–426. Springer, 2006.

8. V. Bindschaedler, P. Grubbs, D. Cash, T. Ristenpart, and V. Shmatikov. The tao of inference in privacy-protected
databases. Proceedings of the VLDB Endowment, 11(11):1715–1728, 2018.

9. L. Blackstone, S. Kamara, and T. Moataz. Revisiting leakage abuse attacks. Cryptology ePrint Archive, Report
2019/1175, 2019. https://eprint.iacr.org/2019/1175.

10. N. Bruno and L. Gravano. Statistics on query expressions in relational database management systems. PhD
thesis, Columbia University, 2003.

11. Y. Cao, W. Fan, Y. Wang, and K. Yi. Querying shared data with security heterogeneity. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data, pages 575–585, 2020.

12. D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner. Dynamic searchable
encryption in very-large databases: data structures and implementation. In NDSS, volume 14, pages 23–26.
Citeseer, 2014.

13. D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner. Highly-scalable searchable symmetric
encryption with support for boolean queries. In Annual cryptology conference, pages 353–373. Springer, 2013.

14. A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational data bases. In
Proceedings of the ninth annual ACM symposium on Theory of computing, pages 77–90, 1977.

15. M. Chase and S. Kamara. Structured encryption and controlled disclosure. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 577–594. Springer, 2010.

16. S. S. Chow, J.-H. Lee, and L. Subramanian. Two-party computation model for privacy-preserving queries over
distributed databases. In NDSS. Citeseer, 2009.

17. V. Ciriani, S. D. C. Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Keep a few: Outsourcing
data while maintaining confidentiality. In European Symposium on Research in Computer Security, pages 440–455.
Springer, 2009.

18. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: Improved definitions and
efficient constructions. Cryptology ePrint Archive, Report 2006/210, 2006. https://eprint.iacr.org/2006/210.

19. E. Damiani, S. D. C. Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati. Balancing confidentiality and
efficiency in untrusted relational dbmss. In Proceedings of the 10th ACM conference on Computer and commu-
nications security, pages 93–102, 2003.

20. I. Demertzis, D. Papadopoulos, C. Papamanthou, and S. Shintre. Seal: Attack mitigation for encrypted databases
via adjustable leakage. In 29th USENIX Security Symposium (USENIX Security 20), 2020.

21. S. Evdokimov and O. Günther. Encryption techniques for secure database outsourcing. In European Symposium
on Research in Computer Security, pages 327–342. Springer, 2007.

22. S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner. Rich queries on encrypted data: Beyond
exact matches. Cryptology ePrint Archive, Report 2015/927, 2015. https://eprint.iacr.org/2015/927.

23. S. Garg, P. Mohassel, and C. Papamanthou. Tworam: efficient oblivious ram in two rounds with applications to
searchable encryption. In Annual International Cryptology Conference, pages 563–592. Springer, 2016.

17

https://github.com/google/encrypted-bigquery-client
https://data.cityofchicago.org/
https://dev.mysql.com/doc/sakila/en/
https://eprint.iacr.org/2019/1175
https://eprint.iacr.org/2006/210
https://eprint.iacr.org/2015/927

24. P. Grofig, I. Hang, M. Härterich, F. Kerschbaum, M. Kohler, A. Schaad, A. Schröpfer, and W. Tighzert. Privacy
by encrypted databases. In Privacy Technologies and Policy - Second Annual Privacy Forum, APF 2014, Athens,
Greece, May 20-21, 2014. Proceedings, pages 56–69, 2014.

25. P. Grubbs, M.-S. Lacharité, B. Minaud, and K. G. Paterson. Pump up the volume: Practical database reconstruc-
tion from volume leakage on range queries. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 315–331, 2018.

26. P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart. Leakage-abuse attacks against order-
revealing encryption. In 2017 IEEE Symposium on Security and Privacy (SP), pages 655–672. IEEE, 2017.

27. Z. Gui, O. Johnson, and B. Warinschi. Encrypted databases: New volume attacks against range queries. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pages 361–378,
2019.

28. H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing sql over encrypted data in the database-service-
provider model. In Proceedings of the 2002 ACM SIGMOD international conference on Management of data,
pages 216–227, 2002.

29. T. Hackenjos, F. Hahn, and F. Kerschbaum. Sagma: Secure aggregation grouped by multiple attributes. ACM
SIGMOD Record, 2020.

30. J. Jaeger and N. Tyagi. Handling adaptive compromise for practical encryption schemes. In Annual International
Cryptology Conference, pages 3–32. Springer, 2020.

31. S. Kamara and T. Moataz. Encrypted multi-maps with computationally-secure leakage. IACR Cryptol. ePrint
Arch., 2018:978, 2018.

32. S. Kamara and T. Moataz. Sql on structurally-encrypted databases. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 149–180. Springer, 2018.

33. S. Kamara, T. Moataz, and O. Ohrimenko. Structured encryption and leakage suppression. In Annual Interna-
tional Cryptology Conference, pages 339–370. Springer, 2018.

34. S. Kamara, T. Moataz, S. Zdonik, and Z. Zhao. An optimal relational database encryption scheme. Cryptology
ePrint Archive, Report 2020/274, 2020. https://eprint.iacr.org/2020/274 Accessed: 2020-02-29.

35. M. Kantarcıoglu and C. Clifton. Security issues in querying encrypted data. In IFIP Annual Conference on Data
and Applications Security and Privacy, pages 325–337. Springer, 2005.

36. E. S. Lab. The clusion library. https://github.com/encryptedsystems/Clusion, 2020.
37. M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-preserving encrypted databases. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages 644–655,
2015.

38. S. Patel, G. Persiano, K. Yeo, and M. Yung. Mitigating leakage in secure cloud-hosted data structures: Volume-
hiding for multi-maps via hashing. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 79–93, 2019.

39. R. A. Popa, C. M. Redfield, N. Zeldovich, and H. Balakrishnan. Cryptdb: protecting confidentiality with encrypted
query processing. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, pages
85–100, 2011.

40. A. Rivkin. Hybrid indexing simulations. https://github.com/AdamRivkin/Hybrid-Indexing-Simulations,
2021.

41. J. Sack. Optimizing your query plans with the sql server 2014 cardinality estimator, 2014.
42. D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In Proceeding 2000

IEEE Symposium on Security and Privacy. S&P 2000, pages 44–55. IEEE, 2000.
43. S. L. Tu, M. F. Kaashoek, S. R. Madden, and N. Zeldovich. Processing analytical queries over encrypted data.

2013.
44. Z. Yang, S. Zhong, and R. N. Wright. Privacy-preserving queries on encrypted data. In European Symposium on

Research in Computer Security, pages 479–495. Springer, 2006.

A CJJ+’s Multimap/Dictionary Encryption Schemes

CJJ+’s RH dictionary encryption scheme. In our StE scheme constructed using SqlStE (in Section 3)
we use a specific RH dictionary encryption scheme to store the rows in DB. We formalize this as Dyeπ whose
algorithms are in Fig. 12. The primitives (given as input to SqlStE) used in Dyeπ are symmetric encryption
scheme SE and function family F. Note that Dyeπ.KS = F.KS× SE.KS.

Example RR multimap encryption scheme. In our StI schemes such as PpJn,PpSj,HybStI we use a
RR multimap Mme as a primitive. We give an example of such a scheme Mmerrπ which is also based on
Πbas. Its algorithms are in algorithms are in Fig. 12. The primitives are as in Dyeπ but we require that
SE.KS = {0, 1}F.ol. Note that Mmerrπ .KS = F.KS.

18

https://eprint.iacr.org/2020/274
https://github.com/encryptedsystems/Clusion
https://github.com/AdamRivkin/Hybrid-Indexing-Simulations

Alg Dyeπ.Enc
(
(Kf ,Ke),D

)
Pad all values in D to the same length

For ` ∈ D.Lbls do D′[F.Ev(Kf , `)]←$ SE.Enc(Ke,D[`])

Return
(
(Kf ,Ke),D

′)
Alg Dyeπ.Tok

(
(Kf ,Ke), `

)
tk← F.Ev(Kf , `) ; Return tk

Alg Dyeπ.Eval(tk,D′)

Return D′[tk]

Alg Dyeπ.Dec
(
(Kf ,Ke), C

)
Unpad and return SE.Dec(Ke, C)

Alg Mmerrπ .Enc(Kf ,M)

Pad all values in M to the same length

For ` ∈M.Lbls do

Ke ← F.Ev(Kf , `‖0) ; K ← F.Ev(Kf , `‖1)

For v ∈M[`] do

D[F.Ev(K, ctr)]←$ SE.Enc(Ke, v) ; ctr← ctr + 1

Return (Kf ,D)

Alg Mmerrπ .Tok(Kf , `)

Return
(
F.Ev(Kf , `‖0),F.Ev(Kf , `‖1)

)
Alg Mmerrπ .Eval

(
(Ke,K),D

)
While D[F.Ev(K, ctr)] 6= ⊥ do

x← SE.Dec
(
Ke,D[F.Ev(K, ctr)]

)
ctr← ctr + 1 ; Unpad x then S

∪←− x
Return S

Fig. 12. Algorithms for RH dictionary encryption scheme Dyeπ and RR multimap encryption scheme Mmerrπ .

B Proof of Theorem 1

Theorem 1. Let StE = SqlStE[StI,SE,F] be a correct StE scheme for SqlDT. Then given algorithms Li,S i
and adversary A we can define L as in Section 3.2 and construct S, As, Af , Ai such that:

Advss
StE,L,S(A) ≤ Advind$

SE (As) + Advprf
F (Af) + Advss

StI,Li,Si(Ai).

Proof. The adversaries, simulator and games G0,G1,G2,G3 are given in Fig. 13. Notice that the
EncRows algorithm used in the adversaries and games is given at the top, and uses two oracles Enc,Fn
which the algorithms define. Let b be the challenge bit selected in Gss

StE,L,S(A).
Notice that we can express Advss

StE,L,S(A) = Pr[Gss
StE,L,S(A)|b = 1] − Pr[Gss

StE,L,S(A)|b = 0] = Pr[G3] −
Pr[G0]. In b = 1 case, this follows directly from the definition of Ai. In the b = 0 case, this follows from the
definition of Li,S i.

The only difference between G0 and G1 is whether IX, tk1, ... , tkn are generated using StI’s algorithms
or S. In both cases, D′’s values are encrypted using SE.Enc. This is the same differentiation going on in
the semantic security game so Gss

StI,Li,Si(Ai) = Pr[G1] − Pr[G0]. Similarly the difference between G1 and

G2 is whether the values in D′ are the output of SE.Enc or random strings which is what is going on in
the IND$-security game Gind$

SE (As), so Advind$
SE (As) = Pr[G2] − Pr[G1]. Once again, the difference between

G2 and G3 is whether the labels in D′ (i.e. the tokens in Dyeπ.Enc) are generated using F.Ev or a random

function which is what is going on in the PRF-security game Gprf
F (Af), so Advprf

F (Af) = Pr[G3]− Pr[G2].
Combining all the above equations gives the desired bound on Advss

StE,L,S(A).

C Proof of Theorem 2

Theorem 2. Let L,S be the leakage algorithm and simulator for Mme. Let Lf ,Lp be the leakage algorithms
given in Fig. 5. Then, for all adversaries A:

Advss
FpJn,Lf ,S(A) ≤ Advss

Mme,L,S(A).

Additionally, there exists adversary Am and simulator Sp such that:

Advss
PpJn,Lp,Sp(A) ≤ Advss

Mme,L,S(Am).

Proof. The first result follows directly from the definition of FpJn,Lf . The second result requires us to
define Am,Sp, which we do in Fig. 14. In both of these, tokens are just concatenated and deconcatenated as
needed by the definition of PpJn. The result follows immediately.

19

Alg S
(
lki, N, L

)
(IX, (tk1, ... , tkn))← S i(lki)

P ←
⋃
i∈[n] StI.Eval(tki, IX)

For rt ∈
⋃

rt∈P rt do D′[rt]←$ {0, 1}SE.cl(L)

While |D′.Lbls| < N do

rt←$ {0, 1}F.ol ; D′[rt]←$ {0, 1}SE.cl(L)

Return
(
(IX,D′), (tk1, ... , tkn)

)

Subroutine EncRowsEnc,Fn((DB, α))

For (id,R) ∈ DB do

For r ∈ R.T do D[(id, r[uk(id)])]← r

Pad all values in D to the same length

For ` ∈ D.Lbls do

T[`]←$ Fn(`) ; D′[T[`]]←$ Enc(D[`])

Return (D′, α,T)

Adversary Ai(s)

(DB,q, st)←$A(s)

Ke←$ SE.KS ; Kf ←$ F.KS

Define Enc : Enc(x) = SE.Enc(Ke, ·)
Define Fn : Fn(x) = F.Ev(Kf , ·)
(D′, α,T)←$ EncRowsEnc,Fn(DB)

Return
(
(D′, α,T),q, (D′, st)

)
Adversary Ai

(
g, IX, tk, (D′, st)

)
b′←$A

(
g, (IX,D′), tk, st

)
Return b′

Adversaries AEnc
s , AFn

f

(DB,q, st)←$A(s) ; Kf ←$ F.KS

Define Fn : Fn(x) = F.Ev(Kf , ·)

Let Enc be a random function from {0, 1}L to {0, 1}SE.cl(L)

(D′, α,T)←$ EncRowsEnc,Fn(DB)

lki←$ Li(DS,q)

(IX, (tk1, ... , tkn))← S i(lki)

b′←$A
(
g, (IX,D′), (tk1, ... , tkn), st

)
Return b′

Games G0(A) , G1(A)

(DB,q, st)←$A(s)

Ke←$ SE.KS ; Kf ←$ F.KS

Define Enc : Enc(x) = SE.Enc(Ke, ·)
Define Fn : Fn(x) = F.Ev(Kf , ·)
(D′, α,T)←$ EncRowsEnc,Fn(DB)

K′i ←$ StI.KS

(Ki, IX)←$ StI.Enc(K′i ,DS)

For i ∈ [n] do tki←$ StI.Tok(Ki, qi)

lki←$ Li(DS, (q1, ... , qn))

(IX, (tk1, ... , tkn))← S i(lki)

b′←$A
(
g, (IX,D′), (tk1, ... , tkn), st

)
Return b′ = 1

Games G2(A) , G3(A)

(DB,q, st)←$A(s) ; Kf ←$ F.KS

Let Enc be a random function from {0, 1}L to {0, 1}SE.cl(L)

Define Fn : Fn(x) = F.Ev(Kf , ·)

Let Fn(·) be a random function from {0, 1}∗ to {0, 1}F.ol

(D′, α,T)←$ EncRowsEnc,Fn(DB)

lki←$ Li(DS, (q1, ... , qn))

(IX, (tk1, ... , tkn))← S i(lki)

b′←$A
(
g, (IX,D′), (tk1, ... , tkn), st

)
Return b′ = 1

Fig. 13. Simulator, adversaries and games used in the proof of Theorem 1.

D Leakage Profile and Security Proof for PpSj

Leakage. In Section 4.2 we overviewed the different forms of leakage that make up PpSj’s leakage profile.
Here, we provide a full pseudocode of Lp for completeness and give some intuition to aid in reading it.
Lp’s pseudocode is given in the top left of Fig. 15. It calls the three subroutines which compute the query-

dependent leakage. RS is first called on each of the q1, ... , qn. Through this, counters cq, cp are maintained
which count the number of accesses to M (to retrieve a value) and HS (to filter based on a predicate).
The labels or predicates associated to each of these subqueries are logged in the vectors q,p. The r1, ... , rn
returned during these calls are part of the leakage. It reveals the “structure” of each query that was made.

Vector q are the queries made to the multimap primitive and is therefore an input to L. The output
of this makes up the multimap leakage (e.g. multimap query equality pattern) and will be returned by Lp.
Vector p is given as input to QP and HF which compute the equality pattern and filtering results on the
hashset predicates respectively.

Theorem 3. Let L,S be the leakage algorithm and simulator for Mme respectively. Let Lp,Sp be as defined
in Fig. 15 and let F be the function family used. Then for all adversaries A there exists adversaries Am, Af

such that:
Advss

PpSj,Lp,Sp(A) ≤ Advss
Mme,L,S(Am) + (p+ 1) ·Advprf

F (Af).

20

Adversary Am(s)

Return A(s)

Adversary Am(g, IX, (tk1, ... , tk2n), st)

tk←
(
(tk1, tk2), ... , (tk2n−1, tk2n)

)
b′←$A(g, IX, tk, st) ; Return b′

Alg Sp(lkm)

(EM, (tk1, ... , tk2n))← Sm(lkm)

tk←
(
(tk1, tk2), ... , (tk2n−1, tk2n)

)
Return (EM, tk)

Fig. 14. Simulators (right) and adversaries (left) used in the proof of Theorem 2.

Here, p is the number of distinct predicates used in constructing HS.

Proof. Adversary Am is given in Fig. 15. In the same diagram, we see A1, A2 which are both PRF adversaries
playing Gprf

F . We define Af to randomly pick one at run time and use it.
Now we can proceed via a standard hybrid argument. Let bp, bf , bm be the challenge bits in Gss

PpSj,Lp,Sp ,

Gprf
F and Gss

Mme,L,S respectively.
From the various advantage definitions, we have that Advss

PpSj,Lp,Sp(A) = Pr[Gss
PpSj,Lp,Sp(A)|bp = 1] −

Pr[Gss
PpSj,Lp,Sp(A)|bp = 0], Advss

Mme,L,S(Am) = Pr[Gss
Mme,L,S(Am)|bm = 1] − Pr[Gss

Mme,L,S(Am)|bm = 0], and

Advprf
F (A1) = Pr[Gprf

F (A1)|bf = 1] − Pr[Gprf
F (A1)|bf = 0]. Notice also that Pr[Gprf

F (A2)|bf = 0, c = i] =

Pr[Gprf
F (A2)|bf = 1, c = i + 1] for i ∈ [p − 1] and Pr[Gprf

F (A2)|bf = 1, c = j] − Pr[Gprf
F (A2)|bf = 1, c = j] ≤

Advprf
F (A2) for j ∈ [p]. This means that

p ·Advprf
F (A2) ≥ Pr[Gprf

F (A2)|bf = 1, c = p]− Pr[Gprf
F (A1)|bf = 0, c = 1].

Notice that Am in Gss
Mme,L,S uses the game to simulate multimap encryption and performs the rest itself as

it happens in the “real world” of Gss
PpSj,Lp,Sp(A). This gives Pr[Gss

PpSj,Lp,Sp(A)|bp = 1] = Pr[Gss
Mme,L,S(Am)|bm =

1]. Similarly, A1 simulates multimap encryption as in the “ideal world” of Gss
Mme,L,S and defers the filtering key

production to Fn which gives us Pr[Gss
Mme,L,S(Am)|bm = 0] = Pr[Gprf

F (A1)|bf = 1]. When A2 plays Gprf
F (A2), if

c = p then all the Ki will be randomly selected. This means Pr[Gprf
F (A1)|bf = 0] = Pr[Gprf

F (A2)|bf = 1, c = p].
Over p hybrids, we get to the version where all the F.Ev(Ki, ·) (where Ki is not revealed to the adversary) are

simulated with random functions, giving us Pr[Gprf
F (A1)|bf = 0, c = 1] = Pr[Gss

PpSj,Lp,Sp(A)|bp = 0] because
this selects all of HS elements as Sp does.

E FpSj Details

Pseudocode. The pseudocode for FpSj is given in Fig. 16.
Notice that FpSj.KS = Mmerrπ .KS = F.KS. The flags iij, ij used come from the terms used for query

classification by KMZZ in [34] where recursive joins are split into “internal joins” (i.e. queries of the form
(j, t1, t2, (r, id1), q2) or (j, t1, t2, (r, id1), q2) and “intermediate internal joins” (i.e.those of form (j, t1, t2, q1, q2)).

As alluded to in Section 4.2, the biggest difference between FP and PP indexing of SjDT queries is the
handling of internal joins. As was done in OPX, this necessitates the use of a specific RR multimap encryption
primitive (namely Mmerrπ from Appendix A) to minimize leakage. In the FpSj’s encryption algorithm, we
manually add entries to the server-side data structure of Mmerrπ (i.e. dictionary D) to index these joins.

Leakage. The leakage algorithm Lf for FpSj is given in Fig. 17.
As mentioned in Section 4.2, the differences between this and Lp all stem from their different handling

of joins. As depicted in Fig. 15, we break down the latter’s query-dependent leakage into the recursion
structure (r computed by RS), leakage due to queries to the underlying multimap encryption scheme (lk
computed using L), hashset filtering results (SET′ computed using HF), hashset query patterns (computed
using QP(p)) and the total number of hashset predicates made (cp). For examples and intuition of each of
these forms of leakage, see the examples given in Section 4.2.

With Lf , we must compute leakage due to three different types of join queries (leaf, internal or internal
intermediate). For leaf joins, the difference in leakage for the two SjDT StI schemes is exactly that of the two
JnDT schemes given in Section 4. For internal intermediate joins, these are handled entirely using hashset
filtering, much like the recursive joins in PpSj. As such, the leakage is comparable (in that we reveal the

21

Alg Lp
(
DS, (q1, ... , qn)

)
Construct M, SET as in PpSj.Enc(·,DS)

For i = 1, ... , n do

(ri,q,p, cq, cp)← RS(qi,q,p, cq, cp)

r← (r1, ... , rn) ; lk←$ L(M,q)

SET′ ← HF(p,
⋃
q∈q M[q],SET)

Return (r, lk,QP(p), cp, SET′, |SET′|)

Subroutine HF
(
(p1, ... , pn), S, SET

)
For all i ∈ [n] and rt ∈ S do

If (pi, rt) ∈ SET then SET′
∪←− (i, rt)

Return SET′

Subroutine QP
(
(p1, ... , pn)

)
For all i, j ∈ [n] if pi = pj then

P[i, j]← 1 else P[i, j]← 0

Return P

Subroutine RS(q,q,p, cq, cp)

If q = (r, id) then q
∪←− (r, id) ; r ← (m, cq) ; cq ← cq + 1

Else if q = (s, at, x, (r, id)) then

q
∪←− (s, at, x) ; r ← (m, cq) ; cq ← cq + 1

Else if q = (s, at, x, q1) then

(r1,q,p, cq, cp)← RS(q1,q,p, cq, cp)

p
∪←− (s, at, x) ; r ← (p, cp, r1) ; cp ← cp + 1

Else if q = (t1, t2, q1, q2) then

For i = 1, 2 do

If qi = (r, id) then

q
∪←− (j, t1, t2, i) ; ri ← (m, cq) ; cq ← cq + 1

Else

(r′i,q,p, cq, cp)← RS(qi,q,p, cq, cp)

p
∪←− (j, t1, t2, i) ; ri ← (p, cp, r

′
i) ; cp ← cp + 1

r ← (j, r1, r2)

Return (r,q,p, cq, cp)

Alg Sp((r1, ... , rn), lk,P, cp,SET′, N)

(EM,mt)←$ S(lk)

For i = 1, ... , cp do

If ∃c ∈ [i] where P[c, i] = 1 then Ki ← Kc

else Ki←$ F.KS

For (i, rt) ∈ SET′ do HS
∪←− F.Ev(Ki, rt)

While |HS| < N do x←$ {0, 1}F.ol ; HS
∪←− x

For i = 1, ... , n do

tki ← QuerySim
(
ri,mt, (K1, ... ,Kcp)

)
Return

(
(EM,HS), (tk1, ... , tkn)

)

Subroutine QuerySim(r, (mt1, ... ,mtcq), (K1, ... ,Kcp))

If r = (m, i) then return (r,mti)

Else if r = (p, i, r1) then

Return
(
s,Ki,QuerySim(r1,mt,k)

)
Else if r = (j, r1, r2)

For i = 1, 2 do

If ri = (m, i) then tki ← (r,mti)

Else if ri = (p, j, r′) then

tk′ ← QuerySim(r′,mt,k) ; tki ←
(
s, tk′,Kj

)
Return (j, tk1, tk2)

Alg Am(s)

(DS, (q1, ... , qn), st)←$A(s)

Construct M, SET as in PpSj.Enc(·,DS)

For i = 1, ... , n do

(ri,q,p, cq, cp)← RS(qi,q,p, cq, cp)

Return (M,q, (SET,p, (r1, ... , rn), st))

Alg Am(g, EM,mt, (SET,p, r, st))

(p1, ... , pcp)← p

(r1, ... , rn)← r

Kf ←$ F.KS

For i = 1, ... , cp do

Ki ← F.Ev(Kf , pi)

k← (K1, ... ,Kcp)

For i ∈ [n] do

tk
∪←− QuerySim(ri,mt,k)

Return A(g, (EM,HS), tk, st)

Alg AFn
1 , AFn

2

(DS, (q1, ... , qn), st)←$A(s)

Construct M, SET as in PpSj.Enc(·,DS)

For i = 1, ... , n do (ri,q,p, cq, cp)← RS(qi,q,p, cq, cp)

(EM,mt)←$ S(L(M,q))

(p1, ... , pcp)← p ; c←$ [p] ; ctr← 1

For (p, rt) ∈ SET do

If Kp = ε then Kp←$ Fn(p)

HS
∪←− F.Ev

(
Kp, rt

)
If Kp = ε then

If ctr < c or p ∈ p then Kp←$ F.KS ; ctr← ctr + 1

Else if ctr = c then Kp ← ⊥ ; ctr← ctr + 1

If Kp = ε then x←$ {0, 1}F.ol ; HS
∪←− x

Else if Kp = ⊥ then HS
∪←− Fn(rt)

Else HS
∪←− F.Ev(Kp, rt)

For i ∈ [n] do tk
∪←− QuerySim(ri,mt, (Kp1 , ... ,Kpcp))

Return A(g, (EM,HS), tk, st)

Fig. 15. Leakage profile (top), simulator (middle) and adversaries (bottom) used in the proof of Theorem 3. In Lp,
RS,L,HF,QP compute the recursion structure leakage, Mme’s leakage profile, hashset filtering results and hashset
query pattern respectively, as discussed in Section 4.2. In Sp, S is a simulator for Mme. Note that when Af (from
Theorem 3) is run it randomly selects one of A1, A2 and runs it.

22

Alg FpSj.Enc
(
Km, (DB, α,T)

)
For all (id,R) ∈ DB and r ∈ R.T do

rt← T[(id, r[uk(id)])] ; M[(r, id)]
∪←− (rt)

For at ∈ R.Ats where at 6= uk(id) do

M[(s, at, r[at])]
∪←− (rt) ; SET

∪←−
(
(s, at, r[at]), rt

)
For (t1, t2) ∈ α do

id1 ← getID(t1) ; id2 ← getID(t2)

For r ∈
(
DB[id1] ./t1,t2 DB[id2]

)
.T do

For i = 1, 2 do rti ← T[(idi, r[uk(idi)])]

M[(j, t1, t2)]
∪←− (rt1, rt2) ; M1[(t1, t2, rt1, 1)]

∪←− rt2
M1[(t1, t2, rt2, 2)]

∪←− rt1 ; SET
∪←−
(
(iij, t1, t2), (rt1, rt2)

)
(Km,D)←$ Mmerrπ .Enc(Km,M)

For (t1, t2, rt, i) ∈M1.Lbls do

For j = 0, 1 do Kj ← F.Ev(F.Ev(Km, (ij, t1, t2, i)), rt‖j)
{rt1, ... , rtn} ←M1[(t1, t2, rt, i)]

For k ∈ [n] do

Pad rtk to M’s max. value length

D[F.Ev(K0, k)]←$ SE.Enc(K1, rtk)

Kf ←$ F.KS ; HS← HsEnc(Kf , SET)

Return
(
(Schema(DB),Km,Kf), (D,HS)

)
Alg FpSj.Tok(Ki, q)

(scma,Km,Kf)← Ki

If q = (r, id) then return (r,Mmerrπ .Tok(Km, (r, id)))

Else if q = (s, at, x, (r, id)) then

Return
(
r,Mmerrπ .Tok(Km, (s, at, x))

)
Else if q = (s, at, x, q1) then

Return
(
s,F.Ev(Kf , (s, at, x)),FpSj.Tok(Ki, q1)

)
Else if q = (j, t1, t2, (r, id1), (r, id2)) then

Return
(
r,Mmerrπ .Tok(Km, (j, t1, t2))

)
Else if q = (j, t1, t2, q1, (r, id)) then

Return (ij,F.Ev(Km, (ij, t1, t2, 1)), 1,FpSj.Tok(Ki, q1))

Else if q = (j, t1, t2, (r, id), q1) then

Return (ij,F.Ev(Km, (ij, t1, t2, 2)), 2,FpSj.Tok(Ki, q1))

Else if q = (j, t1, t2, q1, q2) then

For i = 1, 2 do tki←$ FpSj.Tok(Ki, qi)

Return
(
iij,F.Ev(Kf , (iij, t1, t2)), tk1, tk2

)

Alg FpSj.Eval(tk, (D,HS))

If tk = (r,mt) then

Return (Mmerrπ .Eval(mt,D))

Else if tk = (s,K, tk1) then

P ← FpSj.Eval(tk1, (D,HS))

Return HsFilter(K,P,HS)

Else if tk = (ij,K, i, tk1) then

(P1)← FpSj.Eval(tk1, (D,HS))

For rt ∈ rt ∈ P1 do

For j = 0, 1 do Kj ← F.Ev(K, rt‖j)
x← D[F.Ev(K0, crt)]

While x 6= ⊥ do

S
∪←− (SE.Dec(K1, x), rt)

crt ← crt + 1

x← D[F.Ev(K0, crt)]

If i = 1 then

P1 ← {(rt)‖rt : (rt, rt) ∈ S}
Else

P1 ← {rt‖(rt) : (rt, rt) ∈ S}
Return (P1)

Else if tk = (iij,K, tk1, tk2) then

For i = 1, 2 do

(Pi)← FpSj.Eval(tki, (D,HS))

For rt1 ∈ P1 and rt2 ∈ P2 do

For rt1 ∈ rt1 and rt2 ∈ rt2 do

If F.Ev(K, (rt1, rt2)) ∈ HS then

P0
∪←− rt1‖rt2

Return (P0)

Alg FpSj.Fin(Ki, q, (M1))

(scma,Km,Kf)← Ki

Using scma and q, compute the

attributes at in SjDT.Spec(q,DS)

R← NewRltn(at)

For (m1, ... ,mn) ∈M1 do

R.T
∪←− m1‖... ‖mn

Return R

Fig. 16. Algorithms for FpSj, the StI scheme for SjDT using FP indexing.

equality pattern and filtering results of the predicates) with the only subtlety coming from the fact that FpSj
associates the join predicate with a pair of row tokens, thereby leakage the equality pattern of the join (but
restricted to the rows that have been retrieved by the subqueries).

This leaves the leakage from internal intermediate joins. Recall that the indexing of such joins involved
manual additions to the output of Mmerrπ .Enc (i.e. D). As such, the leakage algorithm must include infor-
mation to simulate these entries. This includes the final number of values in D (i.e. M), the length of these
values (i.e. `), the query pattern of such joins (i.e. QP(j)), query responses to these (i.e. I) and the number
of such joins (i.e. cj).

Security. The security of FpSj Its security is given in Theorem 4 below, which uses the simulator S f given
in Fig. 17.

Theorem 4. Let L,S be the leakage algorithm and simulator for Mmerrπ respectively (given in [12]). Let
F,SE be the primitives used in Mmerrπ and FpSj’s algorithms. Let Lf ,S f be as defined in Fig. 17 and Fig. 17

23

respectively. Then for all adversaries A there exists adversaries Af , As such that:

Advss
PpSj,Lp,Sp(A) ≤ (m+m1)Advind$

SE (As) + (m+m1 + p+ 1).

Here, m,m1 are the number of labels in M,M1 respectively and p is the number of distinct predicates used
in constructing HS.

Proof. This proof is quite similar to Theorem 3, except that we can now reduce security straight to SE,F
because we assumed the use of the Mmerrπ multimap encryption scheme. We therefore omit a full description
of the adversaries and proof except to say that the multiplicative factors in the bound come from the number
of SE and F keys that are used in FpSj.Enc (including those which are an output of F.Ev).

F HybStI Details

Pseudocode. HybStI’s algorithms merge the techniques used in FpSj,PpSj to support hybrid queries from
HybDT. The pseudocode is given in Fig. 18. Note that HybFinalize is a subroutine recursively called by
HybStI.Fin to perform client-side (i.e. PP) joins.

As mentioned in Section 5 the only subtlety in this handling is that the ordering of attributes in the
tuple sets passed into HybStI.Fin may not be consistent with the desired output relation. This edge case may
occur when a recursive join query is made which makes use of both types of indexing. This can be easily
remedied because HybStI.Fin has access to schema scma and query q. Therefore, it can compute the desired
order of attributes in the output relation.

Leakage. For completeness, the leakage profile of HybStI is described via pseudocode in Fig. 19. This leakage
algorithm merges our two previous ones (i.e. Lf and Lp) in the straightforward way. In particular, the only
difference between Lf (Fig. 17) and Lh is the recursion structure of partially precomputed joins which are
handled in the style of Lp (Fig. 15).

Security. As alluded to above, the proof of HybStI’s security (with respect to Lh) is very similar to the
result for Theorem 4. As such, we state the security bound below but omit the proof for brevity.

Theorem 5. Let L be the leakage algorithm and simulator for Mmerrπ (given in [12]) and Lh be as defined
in Fig. 19. Let F,SE be the primitives used in Mmerrπ and HybStI’s algorithms. Then for all adversaries A
there exists Af , As,Sh such that:

Advss
HybStI,Lh,Sh(A) ≤ (m+m1)Advind$

SE (As) + (m+m1 + p+ 1).

Here, m,m1 are the number of labels in M,M1 respectively and p is the number of distinct predicates used
in constructing HS.

G Supplementary Content for Simulations

The Data Portal stores each Chicago relation separately and intends each relation to be useful on its own
– independent from the other relations. The Sakila database also has 15 relations, with a total of 46,238
rows and 88 attributes. Unlike the Chicago database, the Sakila relations have a clear logical structure in
the schema such that each relation has a role defined relative to the other relations. Details about the Sakila
schema can be found on the MySQL website. By including one example database without a structured
schema and one with, we hope to model two different use cases – one where the DBA treats each relation as
existing independently and one where the DBA carefully pre-plans the entire organization.

To give an idea of the data distribution in our data sets, we give some summary statistics about each in
Table 20. We report each relation’s name, number of attributes, number of rows, and minimum, mean, and
maximum attribute densities. The density of an attribute is the average occurrence frequency of the values

in that column. In other words, for relation DB[id] at’s attribute density is |rng(at)|
|DB[id].T| .

24

Alg Lf
(
DS, (q1, ... , qn)

)
Construct M,M1, SET as in FpSj.Enc(·,DS)

For i = 1, ... , n do

(ri,q,p, j, cq, cp, cj)← RS(qi,q,p, j, cq, cp, cj)

r← (r1, ... , rn) ; lk←$ L(M,q) ; S ←
⋃
q∈q M[q]

While S 6= S′ do S ← S′ ; (SET, S′, I)← IJ(j, S′, I)

SET′ ← HF(p, S, SET)

Define M : # of vals in M and M1

Define ` : max. length val in M,M1

Return (r, lk,QP(p), cp,SET′, |SET′|, I,M, `,QP(j), cj)

Subroutine IJ
(
(j1, ... , jn), S, I

)
For i ∈ [n] rt ∈ S do

(t1, t2, k)← ji
If M1[(t1, t2, rt, i)] 6= ⊥ then

S′ ← S′ ∪M1[(t1, t2, rt, i)] ; I[(rt, i)]←M1[(t1, t2, rt, i)]

Return (S′, I)

Subroutine HF(p, S, SET)

(p1, ... , pn)← p

For all i ∈ [n]

If pi = (iij, t1, t2) then

For rt ∈ S × S do

If (pi, rt) ∈ SET then

SET′
∪←− (i, rt)

Else

For rt ∈ S do

If (pi, rt) ∈ SET then

SET′
∪←− (i, rt)

Return SET′

Subroutine QP
(
(t1, ... , tn)

)
For all i, j ∈ [n] if ti = tj then

T[i, j]← 1 else T[i, j]← 0

Return T

Subroutine RS(q,q,p, j, cq, cp, cj)

If q = (r, id) then q
∪←− (r, id) ; r ← (m, cq) ; cq ← cq + 1

Else if q = (s, at, x, (r, id)) then q
∪←− (s, at, x) ; r ← (m, cq) ; cq ← cq + 1

Else if q = (s, at, x, q1) then

(r1,q,p, j, cq, cp, cj)← RS(q1,q,p, j, cq, cp, cj) ; p
∪←− (s, at, x) ; r ← (s, cp, r1) ; cp ← cp + 1

Else if q = (t1, t2, (r, id1), (r, id2)) then q
∪←− (j, t1, t2) ; r ← (m, cq) ; cq ← cq + 1

Else if q = (t1, t2, q1, (r, id)) or q = (t1, t2, (r, id), q1) then

(r1,q,p, j, cq, cp, cj)← RS(q1,q,p, j, cq, cp, cj) ; If q = (t1, t2, q1, (r, id)) then i = 1 else i = 2

j
∪←− (t1, t2, i) ; r ← (ij, cj, i, r1) ; cj ← cj + 1

Else if q = (t1, t2, q1, q2) then

For i = 1, 2 do (ri,q,p, j, cq, cp, cj)← RS(qi,q,p, j, cq, cp, cj)

p
∪←− (iij, t1, t2) ; r ← (iij, cp, r1, r2) ; cp ← cp + 1

Return (r,q,p, j, cq, cp)

Alg Sf(r, lk,P, cp, SET′, N, I,M, `,J, cj)

(r1, ... , rn)← r ; (D,mt)←$ S(lk)

For i = 1, ... , cp do

If ∃c ∈ [i] where P[c, i] = 1 then Ki ← Kc else Ki←$ F.KS

For (i, x) ∈ SET′ do HS
∪←− F.Ev(Ki, x)

While |HS| < N do x←$ {0, 1}F.ol ; HS
∪←− x

For (rt, i) ∈ I.Lbls do

If ∃c ∈ [i] where J[c, i] = 1 then K′i ← K′c else K′i←$ F.KS

{rt′1, ... , rt′n} ← I[(rt, i)] ; For k = 0, 1 do K′′k ← F.Ev(K′i, rt‖k)

For k ∈ [n] do

Pad rt′k to length ` then D[F.Ev(K′′0 , k)]← SE.Enc(K′′1 , rt
′
k)

While |D.Lbls| < M do x←$ {0, 1}F.ol ; D[x]←$ {0, 1}`

For i = 1, ... , n do

tki ← QuerySim(ri,mt, (K1, ... ,Kcp), (K′1, ... ,K
′
cj))

Return
(
(D,HS), (tk1, ... , tkn)

)

Subroutine QuerySim(r,mt,k,k′)

(mt1, ... ,mtcq)←mt

(K1, ... ,Kcp)← k ; (K′1, ... ,K
′
cj)← k′

If r = (m, i) then return (r,mti)

Else if r = (p, i, r1) then

tk← QuerySim(r1,mt,k,k′)

Return (s,Ki, tk)

Else if r = (ij, i, j, r1) then

tk← QuerySim(r1,mt,k,k′)

Return (ij,K′i, j, tk)

Else if r = (iij, i, r1, r2) then

For j = 1, 2 do

tkj ← QuerySim(rj ,mt,k,k′)

Return (iij,Ki, tk1, tk2)

Fig. 17. Top: Leakage profile for FpSj. Here, L is the leakage algorithm for Mmerrπ and subroutines IJ,HF,QP,RS
compute the leakage associated to internal joins, hashset filtering, hashset query patterns and query recursion struc-
tures, as discussed in Section 4.2 and Appendix E. Bottom: Simulator used in the proof of Theorem 4 where S is a
simulator for Mmerrπ .

25

Alg HybStI.Enc
(
Km, (DB, α,T)

)
For all (id,R) ∈ DB and r ∈ R.T do

rt← T[(id, r[uk(id)])] ; M[(r, id)]
∪←− (rt)

For at ∈ R.Ats where at 6= uk(id) do

M[(s, at, r[at])]
∪←− (rt) ; SET

∪←−
(
(s, at, r[at]), rt

)
For (t1, t2) ∈ α do

id1 ← getID(t1) ; id2 ← getID(t2)

For r ∈
(
DB[id1] ./t1,t2 DB[id2]

)
.T do

For i = 1, 2 do

rti ← T[(idi, r[uk(idi)])]

M[(pp, t1, t2, i)]
∪←− (rti)

SET
∪←−
(
(pp, t1, t2, i), rti

)
M[(fp, t1, t2)]

∪←− (rt1, rt2)

M1[(t1, t2, rt1, 1)]
∪←− rt2 ; M1[(t1, t2, rt2, 2)]

∪←− rt1
SET

∪←−
(
(fp, t1, t2), (rt1, rt2)

)
(Km,D)←$ Mmerrπ .Enc(Km,M)

For (t1, t2, rt, i) ∈M1.Lbls do

For j = 0, 1 do

Kj ← F.Ev(F.Ev(Km, (ij, t1, t2, i)), rt‖j)
{rt1, ... , rtn} ←M1[(t1, t2, rt, i)]

For k ∈ [n] do

Pad rtk to M’s max. value length

D[F.Ev(K0, k)]←$ SE.Enc(K1, rtk)

Kf ←$ F.KS ; HS← HsEnc(Kf , SET)

Return
(
(Schema(DB),Km,Kf), (D,HS)

)
Alg HybStI.Tok(Ki, q)

(scma,Km,Kf)← Ki

If q = (r, id) then return
(
r,Mmerrπ .Tok(Km, (r, id))

)
Else if q = (s, at, x, (r, id)) then

Return
(
r,Mmerrπ .Tok(Km, (s, at, x))

)
Else if q = (s, at, x, q1) then

Return
(
s,F.Ev(Kf , (s, at, x)),HybStI.Tok(Ki, q1)

)
Else if q = (pp, t1, t2, q1, q2) then

For i = 1, 2 do

If qi = (r, idi) then

tki←$

(
r,Mmerrπ .Tok(Km, (pp, t1, t2, i))

)
Else

tk′←$ HybStI.Tok(Ki, qi)

tki ←
(
s,F.Ev(Kf , (pp, t1, t2, i)), tk′

)
Return (pp, tk1, tk2)

Else if q = (fp, t1, t2, (r, id1), (r, id2)) then

Return
(
r,Mmerrπ .Tok(Km, (fp, t1, t2))

)
Else if q = (fp, t1, t2, q1, (r, id)) then

Return (ij,F.Ev(Km, (ij, t1, t2, 1)),HybStI.Tok(Ki, q1))

Else if q = (fp, t1, t2, (r, id), q1) then

Return (ij,F.Ev(Km, (ij, t1, t2, 2)),HybStI.Tok(Ki, q1))

Else if q = (fp, t1, t2, q1, q2) then

For i = 1, 2 do tki←$ HybStI.Tok(Ki, qi)

Return
(
iij,F.Ev(Kf , (fp, t1, t2)), tk1, tk2

)

Alg HybStI.Eval(tk, IX)

(D,HS)← IX

If tk = (r, tk1) then return (Mmerrπ .Eval(tk, IX))

Else If tk = (s,K, tk1) then

Return HsFilter
(
K,HybStI.Eval(tk1, IX),HS

)
Else if tk = (pp, tk1, tk2)

Return HybStI.Eval(tk1, IX)‖HybStI.Eval(tk2, IX)

Else if tk = (ij,K, tk1) then

(P1, ... , Pn)← HybStI.Eval(tk1, IX)

Define j : ∃rt ∈ rt ∈ Pj
where D[F.Ev(F.Ev(K, rt‖0), 0)] 6= ⊥

For rt ∈ rt ∈ Pj do

For i = 1, 2 do Ki ← F.Ev(K, rt‖i)
While D[F.Ev(K0, crt)] 6= ⊥ do

rt
∪←− SE.Dec(K1,D[F.Ev(K0, crt)])

P ′
∪←− rt ; crt ← crt + 1

Return P \ {Pj}‖(P ′)
Else if tk = (iij,K, tk1, tk2) then

For i = 1, 2 do

(P i1 , ... , P
i
ni

)← HybStI.Eval(tki, (D,HS))

Define j1, j2 : ∃rti ∈ rti ∈ P iji
where F.Ev(K, (rt1, rt2)) ∈ HS

For rt1 ∈ rt1 ∈ P 1
j1 and rt2 ∈ rt2 ∈ P 2

j2 do

If F.Ev(K, (rt1, rt2)) ∈ HS then P ′
∪←− rt1‖rt2

If P ′ 6= ∅ then return P1 \ {P 1
j1}‖P2 \ {P 2

j2}‖(P
′)

Alg HybStI.Fin
(
(scma,Km,Kf), q, (M1, ... ,Mn)

)
Using scma and q, compute at1, ... ,atn,at, the attri-

butes in M1, ... ,Mn,HybDT.Spec(q,DS) respectively

For i ∈ [n] do

Ri ← NewRltn(ati)

Ri.T← {m1‖... ‖mn′ : (m1, ... ,mn′) ∈Mi}
R← HybFinalize

(
q, (R1, ... ,Rn)

)
If R.Ats 6= at then reorder attributes in R accordingly

Return R

Subroutine HybFinalize(q,R)

If q = (r, id) then (R)← R ; Return R

Else if q = (s, at, x, q1) then return HybFinalize(q1,R)

Else if q = (fp, t1, t2, q1, q2) then

(R1, ... ,Rn)← R

Define j : t1 ∪ t2 ⊆ Rj .Ats

Partition R \ {Rj} into R1,R2 where Ri contains

all the attributes in HybDT(qi,DS)

R← HybFinalize(q1,R1‖(Rj))

R← HybFinalize(q2,R2‖(R))

Else if q = (pp, t1, t2, q1, q2) then

Partition R into R1,R2 where Ri contains all

attributes in HybDT(qi,DS)

Return HybFinalize(q1,R1) ./t1,t2 HybFinalize(q2,R2)

Fig. 18. Algorithms for HybStI, the StI scheme for HybDT using hybrid indexing. HybFinalize is a recursively called
subroutine used in HybStI.Fin.

26

Alg Lh
(
DS, (q1, ... , qn)

)
Construct M,M1, SET as in FpSj.Enc(·,DS)

For i = 1, ... , n do (ri,q,p, j, cq, cp, cj)← RS(qi,q,p, j, cq, cp, cj)

r← (r1, ... , rn) ; lk←$ L(M,q) ; S ←
⋃
q∈q M[q] ; While S 6= S′ do S ← S′ ; (SET, S′, I)← IJ(j, S′, I)

Define M : # of vals in M and M1

Define ` : max. length val in M,M1

Return (r, lk,QP(p), cp,HF(p, S, SET), |SET′|, I,M, `,QP(j), cj)

Subroutine RS(q,q,p, j, cq, cp, cj)

If q = (r, id) then q
∪←− (r, id) ; r ← (m, cq) ; cq ← cq + 1

Else if q = (s, at, x, (r, id)) then q
∪←− (s, at, x) ; r ← (m, cq) ; cq ← cq + 1

Else if q = (s, at, x, q1) then

(r1,q,p, j, cq, cp, cj)← RS(q1,q,p, j, cq, cp, cj) ; p
∪←− (s, at, x) ; r ← (s, cp, r1) ; cp ← cp + 1

Else if q = (pp, t1, t2, q1, q2) then

For i = 1, 2 do

If qi = (r, id) then

q
∪←− (pp, t1, t2, i) ; ri ← (m, cq) ; cq ← cq + 1

Else

(r′i,q,p, j, cq, cp, cj)← RS(qi,q,p, j, cq, cp, cj) ; p
∪←− (pp, t1, t2, i) ; ri ← (p, cp, r

′
i) ; cp ← cp + 1

r ← (pp, r1, r2)

Else if q = (fp, t1, t2, (r, id1), (r, id2)) then q
∪←− (fp, t1, t2) ; r ← (m, cq) ; cq ← cq + 1

Else if q = (fp, t1, t2, q1, (r, id)) or q = (fp, t1, t2, (r, id), q1) then

(r1,q,p, j, cq, cp, cj)← RS(q1,q,p, j, cq, cp, cj) ; If q = (fp, t1, t2, q1, (r, id)) then i = 1 else i = 2

j
∪←− (t1, t2, i) ; r ← (fp, cj, i, r1) ; cj ← cj + 1

Else if q = (fp, t1, t2, q1, q2) then

For i = 1, 2 do (ri,q,p, j, cq, cp, cj)← RS(qi,q,p, j, cq, cp, cj)

p
∪←− (fp, t1, t2) ; r ← (iij, cp, r1, r2) ; cp ← cp + 1

Return (r,q,p, j, cq, cp, cj)

Fig. 19. Leakage algorithm used in Theorem 5, the proof of security for hybrid StI scheme HybStI. The subroutines
HF, IJ,QP are given in Fig. 17.

Chicago
R name

|R.Ats| |R.T| at densities
Min Ave Max

Bike Racks 12 5164 4e-4 0.53 1.0
Census Data 9 78 0.72 0.91 1.0
Crimes 2019 30 1.7e5 6e-6 0.17 1.0

Employee Debt 7 1.4e4 3e-3 0.10 0.46
Fire Stations 7 92 0.01 0.65 1.0

Grafitti 5 67 0.09 0.68 1.0
Housing 14 915 0.03 0.32 0.56

IUCR Codes 4 404 5e-3 0.51 1.0
Land Inventory 19 2.0e5 3e-4 0.41 1.0

Libraries 9 81 0.01 0.63 1.0
Lobbyists 7 1537 0.03 0.22 0.66

Police Stations 15 23 0.04 0.87 1.0
Reloc Vehicles 20 2672 2e-3 0.51 1.0
Street Names 7 2582 2e-3 0.31 1.0

Towed Vehicles 10 3339 1e-3 0.19 0.99

Sakila
R name

|R.Ats| |R.T| at densities
Min Ave Max

Address 8 603 2e-3 0.93 1.0
Actor 4 208 0.02 0.56 1.0

Category 3 16 0.06 0.69 1.0
City 4 600 2e-3 0.55 1.0

Country 3 109 0.01 0.67 1.0
Customer 10 599 2e-3 0.5 1.0

Film 14 1002 1e-3 0.37 1.0
Film Actor 3 5462 1e-4 0.07 0.18
Film Cat 3 1000 1e-3 0.34 1.0
Inventory 4 5481 2e-4 0.30 1.0
Language 3 6 0.17 0.72 1.0
Payment 7 1.6e4 1e-4 0.44 1.0

Staff 11 2 0.5 0.86 1.0
Store 4 2 0.5 0.88 1.0

Rental 7 1.6e4 1e-4 0.47 1.0

Fig. 20. Summary statistics for the Chicago (left) and Sakila (right) data used in our simulations.

27

	Improved Structured Encryption for SQL Databases via Hybrid Indexing

