
A Probabilistic Analysis of CASCADE
Ruth Ii-Yung Ng

University of Chicago
Chicago, IL 60637

Email: ruthfrancisng@uchicago.edu

Abstract—This is a non-technical summary of a paper [1]
written for the University of Chicago REU 2013, available
at http://math.uchicago.edu/∼may/REU2013/. This paper fully
explains the protocols BINARY and CASCADE and shows the
comparable efficiency of the latter with another variant that
might seem like an optimization to it. In [1] we also present
detailed workings of [2] from QCRYPT 2013 and [3], and
propose extensions to both of these, with regards to Secret-Key
Reconcilation protocols for Quantum-Key Distribution. The key
contribution in this is that we were able to clarify the accuracy
of the bound in [3], which we present below.

I. INTRODUCTION

Brassard and Savail’s paper, [3], is a classic reference paper
regarding Secret-Key Reconciliation Protocols for Quantum-
Key Distribution. Specifically, the BINARY and CASCADE
algorithms involve correcting errors in a shared key over
a public channel. So many papers on the topic have done
experimental simulations exploring the accuracy of Brassard’s
approximations for various implementation of CASCADE, that
we will refrain from even trying to list them. However, we
decided to approach the problem from a more theoretical and
mathematical standpoint. Thus, the goal of our research was
to begin a theoretical analysis of BINARY and CASCADE,
opening this area up to more mathematical research.

We rigorously defined relevant variables, compared the
protocol that is currently the ”Industry Standard” with a variant
that might occur as a seemingly natural optimization, then
fully described the steps and approximations made in [3]
and [2] with regards to CASCADE and BINARY. Finally, we
present a list of extensions and suggestions, evaluating and
improvements on the calculations in [3]. We summarize the
novel material below.

II. RELEVANT DEFINITIONS AND PROTOCOLS

Definitions II.1. A key is a finite sequence of numbers, or
bits, where each bit is either 1 or 0. The key-length is the
length of such a sequence, usually denoted by n.

A key, K, of length n is considered secure if, to any party
that is not Alice or Bob, K is equally likely to be any key of
length n.

We say two keys K = {a1 . . . an} and K ′ = {a′1 . . . a′n}
are equivalent if ai = a′i for all i = 1, 2 . . . n.

A bit of a key K = {a1, a2 . . . an} is considered “leaked”
if Eve (a passive attacker) has gained information about K
such that she knows that there are only 2n−1 possible keys
that could be K. However, there exists a bit ai ∈ K such that
K ′ = {a1, a2 . . . ai−1, ai+1 . . . an} is secure.

In Secret-Key Reconciliation, Alice and Bob wish to obtain
the same Secure-Key. Alice shares a key with Bob via an
imperfect Key-Distribution Algorithm, such as Quantum Key
Distribution. The only way for Bob to correct his key is
through a public channel, which is visible to Eve. Thus, we
desire to retain the security of a shared key while correcting
it.

We say that m bits are leaked if m bits of information
individually have been leaked. A bit might take the form of
the value of a single bit, or the value of a 1-bit checksum
of a series of bits. Notice that if m bits of a key K =
{a1, a2 . . . an} are leaked, there is necessarily a key of length
n−m that is secure. However, this is not a sufficient condition.
In the protocols studied below, it is necessary that we leak
bits. Therefore, these protocols also include steps removing
required bits to retain key security. Such protocols are made
up of pre-established “passes”. A pass an algorithm that is
iteratively performed on a key to correct errors.

A. Parameters in Question
The focus of this paper is to calculate the following:

Pi(j) = Probability that on the ith pass, there are j errors

Li = Expected number of leaked bits on the ith pass

For a given i, we wish to maximize Pi(0), but not at the
cost of too high a value of E(

∑
Li).

III. DESCRIPTION OF CASCADE

For a step-by-step breakdown of the protocols, we would
encourage the reader to see our paper in the link posted at [1].
However, the intution of CASCADE is the correct the key by
comparing the checksums of blocks of Alice and Bob’s keys.

We present a summary of the CASCADE protocol (Industry
Standard) that we developed from [3]. We added some details
to optimize the algorithm which may have been omitted in [3]
for brevity’s sake. We begin with the relevant notations.

Notations III.1.

n = Key-length
i = Number of passes completed

ki = Block size on the ith pass
p = Probability that any one bit is an error
σi = Arbitrary key permutation function known to all
B = {a1, . . . , an} Bob’s entire key
A = {a′1, . . . , a′n} Alice’s entire key



Bxi = {a(x,1), a(x,2) . . . , a(x,ki)} a subset of Bob’s key

where Bxi is the xth block in the ith pass and each
a(x,y) is the bit such that aσ−1

i ((x−1)ki+y) = a(x,y).

In other words, a(x,y) is the yth bit in the xth block

of the ith pass, after applying the permutation σi.
Axi = {a′(x,1), a

′
(x,2) . . . , a

′
(x,ki)

} as in Bxi , but for A.

1) Alice sacrifices a random subset of bits in her key by
sharing them with Bob to estimate p. A random subset
of bits would avoid the random and systematic errors of
the key-distribution protocol.

2) With the remaining bits, they apply a permutation, σ1 to
their keys to evenly distribute the errors across the key. The
key from this point onward is taken to be the original key
under the permutation σ1. The rest of the protocol proceeds
in passes, renaming each σi(ai), σi(a

′
i) as ai, a′i respec-

tively. Starting with i = 1, i can be incremented so long as
ki < n/2. These keys are denoted A = {a′1, a′2 . . . , a′n},
and B = {a1, a2 . . . , an}, as described in Notations III.1.

3) Pass i:
(i) For i = 1, we split each key into segments of size k1

and compare the parities of each of these blocks with
the other key’s. For keys of different parity, we use a
parity-based binary search for the a single error (this
is called CONFIRM in [3]). For i 6= 1, we first create
an empty set S which will contain all blocks that
are known to contain an error which has not been
corrected. For each error e ∈ Bix that we find and
correct, remove this block from S. We can use the
permutation σ−1i to retrieve e = aj , the position of e
in Bob’s original key. Then, notice that aj = a(x,j′) ∈
Bi
′

x for some x, j′ in each of i′ = 1, 2, . . . , (i − 1).
Then, for each of the i−1 blocks Bi

′

x identified above,
if Bi

′

x /∈ S, add Bi
′

x to S and if Bi
′

x ∈ S, take it out.
Remark: Note that this set S can be seen as the set
of all blocks which currently have an odd number of
errors. And each time errors are corrected, parities
change, and S is changed accordingly. This is called
“back-tracking” the error through other passes.

(ii) Now, for i 6= 1, we recursively choose the block of
lowest block size in S, we use CONFIRM on the block
to arrive at an additional error. This error e ∈ Bi

′

x

is removed from S and also back-tracked through
the other passes, specifically, adding or removing an
element from S for each of j = 1, 2, . . . n, j 6= i′.
This is continued until S = ∅.

IV. COMPARISON TO OUR VARIANT OF CASCADE

In [1], we propose a variant that seems like a natural
optimization to the protocol in Brassard’s paper. We show it
instead results in a lower Pi(0) than the ”Industry Standard”.

The only modification is in step (3) of the protocol, where,
instead of immediately correcting an error from each Bix of
odd-parity we add them to the set S immediately and begin
the back-tracking as above until S = ∅ to complete the pass.

It is not obvious which one of these variants leaks less bits in
the process of correcting the whole key. In fact, we constructed
examples in [1] where either protocol is more efficient. How-
ever, looking at the experimental results for

∑
Li and Pi(0)

we see that the two protocols are comparable in efficiency [1],
suggesting that implementing the Industry Standard CASCADE
is preferable since it requires less management of a dynamic
list.

One would intuitively think that the variant proposed by us
would leak less bits while removing a comparable number of
errors because each time an error is corrected in the ith pass,
we would pick the smallest block known to contain an error,
which will leak less bits in a binary search for an incorrect bit,
whereas in the Industry Standard, we begin by correcting all
the errors known to be in the ith pass, which have the largest
ki of all the blocks evaluated. However, experimental results
prove otherwise and we postulate the following reason.

Notice that when a particular block has an odd number of
errors, arranged in a specific way, one particular error will
be determined by binary search. However, when an error is
back-tracked to a pass, it could be any error in the block.
Therefore, perhaps by using a pass as in BINARY first, more
errors would be generated at the ith pass in order to remove
errors at each other pass that would not otherwise be corrected
if we back-tracked at every opportunity available.

V. EXTENSIONS TO BRASSARD’S PAPER

In expanding Brassard’s derivation of the lower bound on
Pi(0), we encountered several areas where the bound could be
tightened. We split these into more major contributions as well
as some minor contributions. Below are relevant Notations for
this sections:

Notations V.1.

δi(j) = P(at the ith pass, 2j errors remain in Bob’s key)

Ei = E(Errors after the pass i in some updated B1
x)

γi = P(2 errors in B1
x corrected in pass i | B1

x was erronous)

A. Major Contributions

1) Firstly, we propose generalizing one of Brassard’s ma-
jor assumptions to fix an error in Brassard’s proof. In
Brassard’s proof, one of the underlying assumptions is
assumed only for i = 1 (Equation 4.10 in [1]. This means
that what should be

ki
2∑

l=j+1

δi(l) ≤
1

4
δi(j), (V.2)

was stated by Brassard for only i = 1. Brassard’s
version of this assumption renders the substitution in the
calculations to be incorrect for i 6= 1. Also, because the
equation does not involve a strict equality sign, we cannot
create an induction to derive the assumption we require
from the one Brassard proposes.
We experimentally explored Brassard’s approximation for
i = 1. The reader is encouraged to look at the full tables



in [1]. However, we were able to generate tables like
Table I, where a ”1” indicates the assumption is true, ”0”
where the assumption is false and ”X” where the protocol
cannot run under those specifications.

j 0 1 2 3 4 5 6 7 8
k1

8 1 1 1 1 1 X X X X
16 1 1 1 1 1 1 1 1 1
32 0 1 1 1 1 1 1 1 1
64 0 0 0 1 1 1 1 1 1

128 0 0 0 0 0 0 1 1 1
256 0 0 0 0 0 0 0 0 0

TABLE I
TESTING (V.2): i = 1, p = 0.05

Through this analysis we generalized that the assumption
held for large values of j, small values of p and small
values of ki. However, there are still specifications under
which the assumption does not hold. We did not find a
way to efficiently simultate this for i 6= 1 so future work
could expand upon this.

2) Secondly, Brassard states Ei ≤ Ei−1

2 as an assumption
of his result (Equation 4.11)in [1]. In [3], the equation is
cited as a fact, and used without justification. However,
notice that Ei ≤ Ei−1

2 is not universally true for all i, p
and n. For example, consider a block where every bit is
an error, meaning that p = 1.0. Then, no errors would get
corrected in any pass and Ei = Ei−1 for all passes. In this
case, the equation Ei ≤ Ei−1

2 does not hold. We cannot
determine under what circumstances Brassard quoted this
equation, but it is clearly not true in the general case.

B. Minor Contributions

There are a number of other areas for minor changes to
tighten the bound.

1) The property

e−ab = lim
b→∞

(1− a)b.

is used in Brassard’s proof as an approximation (Just
below equation 4.6 in [1]). For smaller values of n, this
approximation is inaccurate as was shown in [4].

2) Later in his calculations Brassard makes an approxima-
tion (4.6 in [1]). He approximates the probability of all
nEi−1

k1
− 1 errors being outside Bix to be,1−

(
1− ki

n

)nEi−1
k1

2

,

instead of, 1−
(
1− ki

n

)nEi−1
k1
−1
2

.

Which would be the more accurate formula since we are
considering the case where there are nEi−1

k1
−1 errors. We

are unsure how much of an effect this has on the value of

γi, however, in [3], Brassard does not even present this
as an approximation.

3) Finally, we were unable to theoretically analyze Bras-
sard’s other assumption in his main theorem (Theorem 4.8
in [1]). However, we did write code that experimentally
explored the validity of this assumption

E1 ≤ −
ln 1

2

2
, (V.3)

.
In similar fashion to I, we generated the following table
based on experimental runs of CASCADE.

p 0.01 0.03 0.05 0.07 0.09 0.11
k1
8 1 1 1 1 1 0
16 1 1 0 0 0 0
32 1 0 0 0 0 0
64 1 0 0 0 0 0

128 0 0 0 0 0 0
TABLE II

TESTING (V.3)

In general, we can say that the assumption is true for small
values of p and small values of ki.

VI. CONCLUSION

In conclusion, our paper’s [1] contribution is that it clearly
defines the probabilistic challenge that is proposed by Brassard
regarding BINARY and CASCADE. It presents significant
extensions to Brassard’s work which can potentially improve
the bound we have on Pi(0) and E(

∑
Li). The full paper

also gives a complete rundown of Brassard’s proof and the
proof in [2], the most recent theoretical bounds on BINARY
and CASCADE at present. This will allow readers interested in
extensions (of which there are many listed in the full paper)
to rigorously understand the starting point which we are all at
with regards to this problem.

ACKNOWLEDGMENTS

We would like to thank Prof, J. Peter May, Benjamin
Fehrman and Jessica Lin for organizing the REU, as well
as Rediet Abebe, this project’s mentor. We also wish to
thank Antonio (Tuca) Auffinger and Yan Zhang for helping to
analyze the protocol. I would also like to thank my scholarship
agency, DSO National Laboratories, for their support.

REFERENCES

[1] Ng, Ruth A Probabilistic Analysis of BINARY and CASCADE Univer-
sity of Chicago REU http://math.uchicago.edu/∼may/REU2013/

[2] Seet, Sean; Ng, Ruth; Khoo, Khoongming An Accurate Analysis of the
BINARY Information Reconciliation Protocol by Generating Functions.
QCRYPT 2013

[3] Brassard, Gilles; Salvail, Louis Secret-Key Reconciliation by Public
Discussion. EUROCRYPT ’93 Workshop on the theory and application
of cryptographic techniques on Advances in cryptology, pp. 410-423,
Springer-Verlag, 1994

[4] Yamazaki, Koichi; Nair, Ranjith; Yuen, Horace P. Problems of the CAS-
CADE Protocol and Renyi Entropy Reduction in Classical and Quantum
Key Generation http://arxiv.org/pdf/quant-ph/0703012.pdf


